Что происходит в космосе на данный момент

10 самых последних космических открытий

что происходит в космосе на данный момент
Наука

Чем совершеннее становятся технологии, тем больше возможностей открывается перед учеными и тем больше мы можем узнать о нашей Вселенной. С каждым годом космос открывает перед нами все больше своих тайн, в ближайшее время мы наверняка узнаем то, о чем раньше не могли даже догадываться. Узнайте о том, какие открытия в области космоса были сделаны в последние годы.

1) Еще один спутник Плутона

На сегодняшний день известно уже 4 спутника Плутона. Харон был открыт в 1978 году, и он является самым крупным его спутником. Диаметр этого спутника 1205 километров, что заставляет многих ученых полагать, что Плутон на самом деле является «двойной карликовой планетой».

Ничего нового не было слышно о ледяных телах, которые вращаются вокруг Плутона, до 2005 года, пока космический телескоп «Хаббл» не обнаружил еще 2 спутника – Никту и Гидру. Диаметр этих космических тел от 50 до 110 километров. Но самое удивительное открытие ждало ученых в 2011 году, когда «Хабблу» удалось запечатлеть еще один спутник Плутона, который временно называется P4. Его диаметр составляет всего от 13 до 34 километров.

Примечательным в данном случае является то, что «Хаббл» сфотографировал такой крошечный космический объект, который расположен на расстоянии около 5 миллиардов километров от нас.

2) Гигантские космические магнитные пузыри

Два космических аппарата НАСА «Войяжер» обнаружили магнитные пузыри в районе Солнечной системы, известной как Гелиосфера, которая расположена в 15 миллиардах километров от Земли.

В 1950-х годах ученые считали, что этот район космического пространства относительно ровный, но когда «Войяжер 1» достиг Гелиосферы в 2005, а «Войяжер 2» в 2008 году, они засекли турбулентность, которую образует магнитное поле Солнца, и там формируются магнитные пузыри, диаметром около 160 миллионов километров.

3) Хвост звезды Мира А

В 2007 году орбитальный космический телескоп GALEX сканировал Миру А, старую звезду — красного карлика, что являлось частью предстоящего проекта по сканированию всего неба в ультрафиолетовом свете.

Астрономы были шокированы, когда обнаружили что у Миры А имеется длинный хвост, тянущийся за ней, как за кометой, который имеет протяженность около 13 световых лет. Эта звезда двигается по Вселенной с необычайно большой скоростью, примерно 470 тысяч километров в час.

До этого считалось, что у звезд не бывает хвостов.

4) Вода на Луне

9 октября 2009 года Космический аппарат для наблюдения и зондирования лунных кратеров НАСА LCROSS обнаружил воду в холодном и постоянно находящимся в тени кратере на южном полюсе Луны.

LCROSS является зондом НАСА, который был создан для столкновения с лунной поверхностью, а маленький спутник, следующий за ним, должен был измерить химический состав материала, который поднялся вверх при столкновении.

После целого года анализа данных НАСА сообщило о том, что на нашем спутнике имеется вода в виде льда, которая находится на дне этого вечно темного кратера. Позже другие данные показали, что тонкий слой воды покрывает лунный грунт, по крайней мере, в некоторых областях Луны.

5) Карликовая планета Эрида

В январе 2005 года была открыта новая планета Солнечной системы Эрида, которая вызвала в астрономическом мире массу споров о том, что следует считать планетой вообще.

Эриду первоначально посчитали 10-й планетой Солнечной системы, но затем все объекты пояса Койпера и пояса астероидов приравняли к новому классу – карликовые планеты. Эрида находится за орбитой Плутона и имеет примерно такой же размер, хотя первоначально считалось, что она больше Плутона.

Известно, что у Эриды имеется один спутник, который назвали Дисномия. Пока Эрида и Дисномия считаются самыми дальними объектами Солнечной системы.

6) Следы водных потоков на Марсе

В 2011 году НАСА, предоставив фотографии Красной планеты, сделало заявление о том, что оно имеет свидетельства того, что на Марсе могла в прошлом течь вода, которая оставила следы. Действительно, на снимках видны длинные полосы, похожие на те, что оставляют в породах текущие потоки.

Ученые полагают, что эти потоки — соленая вода, которая разогревается во время летних месяцев и начинает стекать по поверхности. Признаки того, что на Марсе когда-то была жидкая вода, были обнаружены и раньше, однако впервые ученые заметили, что эти следы меняются в течение короткого периода времени.

7) Спутник Сатурна Энцелад и его гейзеры

В июле 2004 года космический аппарат «Кассини» вышел на орбиту вокруг Сатурна. После того, как миссии «Войяжер» приблизились к этому спутнику, исследователи решили запустить в данный район другой аппарат для более подробного исследования Энцелада.

После того как «Кассини» несколько раз пролетел мимо спутника в 2005 году, ученым удалось сделать ряд открытий, в частности, что в атмосфере Энцелада имеется водяной пар и сложные углеводородные соединения, которые выделяются из геологически активного района Южного Полюса.

В мае 2011 года ученые НАСА на конференции, посвященной этому спутнику, заявили, что Энцелад можно считать самым первым претендентом на обнаружение жизни.

8) Тёмный поток

Темный поток, обнаруженный в 2008 году, предоставил ученым больше вопросов, чем ответов. Скопления материи во Вселенной, как оказалось, двигаются на очень большой скорости в одном и том же направлении, что невозможно объяснить с помощью любой известной гравитационной силы в пределах обозримой части Вселенной. Этот феномен был назван «Темный поток».

Наблюдая за большими скоплениями галактик, ученые обнаружили около 700 галактических скоплений, двигающихся с определенной скоростью по направлению к отдаленной части Вселенной. Некоторые ученые даже осмелились предположить, что Темный поток двигается из-за давления, вызванного другой Вселенной. Однако некоторые астрономы вообще оспаривают существование темного потока.

9) Экзопланеты

Первые экзопланеты, то есть планеты, существующие за пределами Солнечной системы, были открыты в 1992 году. Астрономы открыли несколько мелких планет, вращающихся вокруг звезды Пульсар.

Первая гигантская планета была замечена в 1995 году возле близкой от нас звезды 51 Пегас, которая делала полный оборот вокруг этой звезды за 4 дня. К маю 2012 года в энциклопедии экзопланет было зарегистрировано уже 770 экзопланет. 614 из них являются частью планетарных систем и 104 – множественных планетарных систем.

К февралю 2012 года миссия НАСА «Кеплер» выявила 2321 неподтвержденных кандидата на звание экзопланет, которые связаны с 1790 звездами.

10) Первая планета в обитаемой зоне

В декабре 2011 года НАСА подтвердила сообщения об открытии первой планеты, которая расположена в обитаемой зоне, вращаясь вокруг своей родной звезды, похожей на Солнце. Планета получила название Kepler-22b. Ее радиус в 2,5 раза больше радиуса Земли, и она обращается вокруг своей звезды в пригодной для появления жизни зоне. Ученые пока не уверены относительно состава этой планеты, однако это открытие явилось серьезным шагом на пути к обнаружению похожих на Землю миров.

Источник: https://www.infoniac.ru/news/10-samyh-poslednih-kosmicheskih-otkrytii.html

10 заблуждений о космосе, в которые стыдно верить

что происходит в космосе на данный момент

Во многих фильмах можно увидеть такую картину: человек оказывается в открытом космосе без скафандра (либо с повреждённым скафандром) и быстро замерзает, превращаясь в хрупкую ледяную статую, трескающуюся от любого воздействия.

Что на самом деле. У космоса нет температуры. Он не холодный и не горячий — никакой : в вакууме нет конвекции и теплопроводности. Вообще, вакуум — хороший термоизолятор. Так что у астронавтов больше проблем с перегревом , чем с переохлаждением.

И если вы окажетесь в космосе без скафандра в тени планеты, то, скорее всего, испытаете лёгкую прохладу из‑за испарения воды с поверхности кожи. Но до твёрдого состояния точно не заморозитесь.

2. Люди могут лопнуть в космосе

Кадр из фильма «Вспомнить всё», 1990 год.

Бытует мнение, что в вакууме или в атмосфере с низким давлением, например на Марсе, человек может взорваться, как воздушный шарик. Глаза вылезут из орбит, сосуды полопаются, и незадачливый астронавт превратится в кровавое месиво.

Что на самом деле. Давление в вакууме отсутствует, и это может привести к тому, что ваши лёгкие лопнут , если вы не выдохнете, прежде чем выпрыгнуть из корабля. В крови начнут появляться газовые пузырьки (это называется эбуллизм ), на теле образуются отёки. Но кожа человека слишком упругая, и она не позволит вам взорваться.

Эксперименты на собаках показали, что в вакууме можно без последствий находиться до полутора минут, и после этого организм быстро восстановится. А вот более длительное пребывание летально из‑за гипоксии, то есть нехватки кислорода.

3. У Луны есть тёмная сторона

Тёмная сторона луны не такая уж тёмная. Снимок с зонда Lunar Reconnaissance Orbiter NASA, moon.nasa.gov

Когда люди говорят «тёмная сторона Луны», то представляют себе мрачное место, куда никогда не падает солнечный свет. Наверное, именно поэтому там строят свои базы нацисты и десептиконы.

Что на самом деле. Все стороны Луны освещаются Солнцем, и на ней есть день и ночь — правда, длятся они по две недели. Тем не менее у спутника Земли есть обратная сторона. Но из‑за того, что период вращения вокруг нашей планеты и вокруг собственной оси у Луны схожи, с Земли видно только одно её полушарие. А первые снимки другого были сделаны советской АМС «Луна‑3» ещё в 1959 году. И ничего особо таинственного там нет.

4. Чёрные дыры выглядят как воронки

Чёрная дыра в представлении художника, news.sky.com

Из‑за фильмов и картинок в интернете многие люди полагают, что чёрные дыры выглядят как вихрь, засасывающий всё вокруг себя. Или как воронка в раковине, куда стекает вода.

Что на самом деле. Впервые чёрную дыру показали реалистично в фильме «Интерстеллар», основываясь на теоретических моделях физика Кипа Торна. Уже позже NASA сделало первый её снимок с помощью системы из восьми радиотелескопов Event Horizon Telescope. В реальности чёрная дыра выглядит не как воронка, а как тёмная сфера, окружённая аккреционным диском из падающего на неё газа.

5. Солнце жёлтое

Снимок Солнца, сделанный астронавтом NASA Терри Вёртсом с борта МКС в 2015 году, space.com

Если вы попросите кого‑нибудь нарисовать наше светило, то начинающий художник непременно возьмёт жёлтый карандаш. Взгляните на Солнце, и убедитесь, что оно имеет такой оттенок.

Что на самом деле. Желтоватым Солнце делает наша атмосфера. И если взглянуть на снимки из космоса, становится понятно, что его цвет — белый . Но мы так привыкли считать Солнце жёлтым, что даже учёные классифицируют похожие на него звёзды как «жёлтые карлики» просто для удобства.

6. Первой в космос полетела собака Лайка

Героическая дворняга‑космонавт, infuture.ru

Кто первым полетел в космос? Конечно, Юрий Гагарин. А из братьев наших меньших? Собака по имени Лайка, это всем известно. Она была обычной дворнягой из приюта, отправившейся первой покорять космос.

Что на самом деле. Лайка действительно первой оказалась на орбите Земли. Но в космосе бывали живые существа и до неё. В феврале 1947 года американцы с помощью трофейной немецкой ракеты «Фау‑2» отправили в суборбитальный полёт несколько плодовых мушек (дрозофил), чтобы изучить на них воздействие космической радиации. Они долетели до высоты в 109 км, а границей космоса считается отметка в 80 км. Так что первыми его увидели мухи.

7. NASA потратило миллиарды на пишущую в космосе ручку

Та самая чудо‑ручка, spencerdub.me

Простыми ручками в космосе пользоваться нельзя, потому что чернила в стержне там не могут стекать вниз. И, согласно одной городской легенде , чтобы астронавты всё-таки смогли вести записи, NASA потратило 12 миллиардов долларов на изобретение специальной ручки. Она способна писать вверх ногами на любой поверхности при температуре от 0 до 300 °С. Советские же космонавты просто пользовались карандашами. Вот она, русская смекалка.

Что на самом деле. Поначалу и американцы, и русские пользовались в космосе карандашами, но это приводило к ряду проблем: частицы графита отслаивались и попадали в воздушные фильтры космических кораблей. А специальную ручку изобрёл Пол Фишер из Fisher Pen Company, и сделал он это независимо от NASA. Мужчина продал ведомству 400 штук по 2,95 доллара за каждую.

Наши космонавты тоже пользовались такими ручками. В своё время их закупали для работы на станции «Мир». Кстати, если хотите, можете тоже приобрести себе космическую ручку.

8. Через пояс астероидов трудно пролететь

Пояс астероидов в представлении художника, universetoday.com

Помните, как в «Звёздных войнах» Хан Соло мастерски пилотировал свой «Тысячелетний сокол», чтобы пробраться через пояс астероидов? Он умудрился обогнуть множество этих космических тел, да ещё и от погони имперских истребителей оторвался, хотя ежесекундно рисковал врезаться в парящие повсюду каменные глыбы.

Что на самом деле. В нашей Солнечной системе тоже есть свой пояс астероидов между орбитами Марса и Юпитера. Астрономы не уверены, сколько там каменных глыб, и называют приблизительное число в 10 миллионов. Но вы, даже не будучи крутым пилотом вроде Соло, легко пролетите сквозь них. Потому что среднее расстояние между астероидами в поясе — полтора миллиона километров. Это примерно в четыре раза больше, чем расстояние между Землёй и Луной.

Поэтому, чтобы в реальности врезаться в астероид, понадобится немалое старание и тщательные орбитальные манёвры. Вероятность не то что столкновения, но и просто незапланированного сближения космического корабля с каменной глыбой составляет менее чем один к миллиарду.

9. Космические корабли летают по прямой

Кадр из фильма «Прометей», 2012 год

В фильмах космические аппараты легко перемещаются из одного места в другое, просто развернувшись прямо к цели и включив двигатели. Точно так же, как автомобили или корабли на Земле. А если космолёту надо сесть на планету, он просто устремляется в её атмосферу на полной скорости.

Что на самом деле. В реальности космические аппараты двигаются от одной орбиты к другой по дугообразной гомановской траектории. И у них при этом отключены двигатели. Они включаются два раза, для разгона в начале и для торможения в конце, остальной путь корабль проделывает по инерции.

Если хотите самостоятельно поуправлять шаттлом и вживую увидеть движение по гомановской траектории, попробуйте поиграть в космический симулятор Kerbal Space Program. Он даёт наглядное представление об основах орбитальной механики.

Да, и ещё: корабли, собирающиеся приземлиться, сходят с орбиты, развернувшись двигателями по ходу движения, чтобы затормозить. В голливудских блокбастерах вроде «Прометея» такого не покажут, чтобы у зрителя не возникло вопроса, почему челноки летают задом наперёд.

10. Летом тепло, потому что Земля ближе к Солнцу

Солнце и Земля, sunearthday.nasa.gov

Смена времён года вызвана меняющимся расстоянием от Земли до Солнца. Логично, правда? К сожалению, иногда так думают не только маленькие дети, но и вполне взрослые люди.

Что на самом деле. Орбита Земли не совсем круглая — она эллиптическая. Наша планета достигает перигелия (точки на орбите, ближайшей к Солнцу) в январе и афелия (самой дальней точки от Солнца) примерно через шесть месяцев. Если бы от этого зависела погода, у нас было бы лето в январе и зима в июле.

Сезоны меняются из‑за наклона оси вращения Земли относительно её орбитальной плоскости (эклиптики). Движение по орбите действительно вызывает температурные колебания в пределах 5 °С, но этого недостаточно, чтобы устроить смену времён года.

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие российские космонавты находятся в космосе в 2020 годуи какую работу они выполняют на орбите? Кто полетит следующим экипажем,расписание долговременных космических экспедиций на МКС.

Работа по освоению космоса – одна из важнейших в России,большая часть научной деятельности и экспериментов, связанных с ней, являютсясильнейшим катализатором для остальных сфер развития.

 

Несмотря на определенные сложности с финансированием и даже авариями в последнее время, работа продолжается, и российские астронавты продолжают летать на орбиту, поддерживая мировое признание России, и внося свою лепту в мировое развитие.

Кто сейчас в космосе? 

10 последних открытий в космосе

10 последних открытий в космосе

10 последних открытий в космосе

(согласно списку Терезы Корнелиус)

Чем сильнее развиваются современные технологии, тем больше открывается возможностей для того, чтобы больше узнать о нашей Вселенной. В последнее время стало возможным подтвердить такие факты о Вселенной, о которых раньше мы могли только догадываться. Вот список некоторых из недавних открытий в космосе. Наслаждайтесь!

10. Открыт новый спутник Плутона (P4)

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

Я как-то с детства привык отслеживать интересные события, которые происходят в космической отрасли, включая разного рода запуски космических аппаратов, находки астрономов и прочее.

Надо сказать, за последние несколько лет космос стал гораздо ближе к человеку, если так можно выразиться. Люди снова заинтересовались Вселенной, и тем, что там происходит. В общем, в этом небольшом обзоре предлагаю ознакомиться с самыми интересными «космическими» событиями года.

Ее основатель, голландец Бас Лансдорп собирает средства на отправку команды людей к Марсу. При этом у программы есть интересный нюанс: обратного билета просто нет, люди отправляются на Красную планету в один конец.

Требуются добровольцы, и, что интересно, они находятся в большом количестве. Тысячи человек подают заявки на участие в этом проекте. В начале года было отобрано более тысячи кандидатов, котоыре, если и полетят, то только через несколько лет.

Вот модель того, что может ожидать добровольцев на Марсе:

Заселение Марса будет проходить в несколько этапов: создание посадочного модуля, создание и транспортировка модулей для жизни колонистов, транспортировка колонистов, освоение Марса.

Самая большая цифрова камера запущена в космос

15 фактов о космосе, которые шокируют вас

15 фактов о космосе, которые шокируют вас

15 фактов о космосе, которые шокируют вас

Космические исследования в реальной жизни так же размыты, как и в кино. Это область, в которой не всегда можно получить точные данные. О размерах и масштабах Вселенной не знают даже лучшие ученые. Однако с каждый днем происходит все большее ее освоение.

Что все же известно исследователям о космосе, чего, возможно, еще не знаете вы?

Запись космических звуков

Что происходит с человеком в космосе?

Что происходит с человеком в космосе?

Что происходит с человеком в космосе?

Человечество давно мечтает покорить Марс. В октябре 2016 года НАСА заявило своей приоритетной целью отправку людей на Красную Планету к 2030-м годам.

Физиология человека и невесомость

Факты про освоение космоса, о которых не все знают

Факты про освоение космоса, о которых не все знают

Факты про освоение космоса, о которых не все знают

10 любопытнейших фактов об освоении космоса.

Секретные слова

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Тринадцать лет подряд Россия лидировала по количеству космических запусков. Но в 2016 году нас обогнали США и — впервые — Китай. В 2017 году одна частная компания SpaceX имеет шансы обогнать Россию по количеству запусков. Наше лидерство по этому параметру было предметом гордости, и его потеря стала поводом для расстройства. Насколько оно обосновано?

Количество пусков по странам с 2004 года

Большое количество российских запусков в последние годы имеет сразу несколько причин. Во-первых, развертывались прикладные спутниковые группировки — ГЛОНАСС для навигации, «Экспресс», «Ямал» для связи, «Ресурс» для дистанционного зондирования Земли, военные спутники. Во-вторых, активно запускались иностранные космические аппараты по коммерческим контрактам.

Когда в 90-х годах российские ракеты-носители вышли на мировой рынок, они оказались дешевыми и были очень востребованы.

Разница во времени на Земле и в космосе

Разница во времени на Земле и в космосе

Разница во времени на Земле и в космосе

В 20 в. было доказано, почему отличается время в космосе и на Земле. Разница создается благодаря действию гравитационного поля.

До научных открытий, совершенных ученым Альбертом Эйнштейном, время считалось неизменной величиной. Люди думали, что оно всегда и везде протекает одинаково.

Все изменила Общая теория относительности — согласно данному научному труду, пространство и время связаны друг с другом, а минуты и секунды отсчитываются неодинаково для тел движущихся и находящихся в состоянии покоя.

Учёные США провели исследования изменения пространства. Эксперимент заключался в запуске спутника, который благодаря наличию специального оборудования измерял и высчитывал влияние нашей планеты на пространство, которое ее окружает. Действительно, Земля как бы деформирует пространство, находящееся рядом с ней. Credit: rutvet.ru.

Важность теории Эйнштейна

10 самых последних космических открытий

что происходит в космосе на данный момент
Наука

Чем совершеннее становятся технологии, тем больше возможностей открывается перед учеными и тем больше мы можем узнать о нашей Вселенной. С каждым годом космос открывает перед нами все больше своих тайн, в ближайшее время мы наверняка узнаем то, о чем раньше не могли даже догадываться. Узнайте о том, какие открытия в области космоса были сделаны в последние годы.

1) Еще один спутник Плутона

10 заблуждений о космосе, в которые стыдно верить

что происходит в космосе на данный момент

Во многих фильмах можно увидеть такую картину: человек оказывается в открытом космосе без скафандра (либо с повреждённым скафандром) и быстро замерзает, превращаясь в хрупкую ледяную статую, трескающуюся от любого воздействия.

Что на самом деле. У космоса нет температуры. Он не холодный и не горячий — никакой : в вакууме нет конвекции и теплопроводности. Вообще, вакуум — хороший термоизолятор. Так что у астронавтов больше проблем с перегревом , чем с переохлаждением.

И если вы окажетесь в космосе без скафандра в тени планеты, то, скорее всего, испытаете лёгкую прохладу из‑за испарения воды с поверхности кожи. Но до твёрдого состояния точно не заморозитесь.

2. Люди могут лопнуть в космосе

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие российские космонавты находятся в космосе в 2020 годуи какую работу они выполняют на орбите? Кто полетит следующим экипажем,расписание долговременных космических экспедиций на МКС.

Работа по освоению космоса – одна из важнейших в России,большая часть научной деятельности и экспериментов, связанных с ней, являютсясильнейшим катализатором для остальных сфер развития.

 

Несмотря на определенные сложности с финансированием и даже авариями в последнее время, работа продолжается, и российские астронавты продолжают летать на орбиту, поддерживая мировое признание России, и внося свою лепту в мировое развитие.

Кто сейчас в космосе? 

25 сентября космический корабль «Союз-15» привез на МКС трех новых космонавтов — россиянина Олега Скрипочку, американку Джессику Меир и гражданина ОАЭ Хаззаа Аль-Мансури. 

Их радостно (но втайне с долей уныния в душе) встретили шестеро членов предыдущей экспедиции — Алексей Овчинин, Ник Хейг, Кристина Кук, Александр Скворцов (Россия), Лука Парминтано (Италия) и Эндрю Морган (США). Тогда на маленькой станции оставались целых 9 человек.

3 октября корабль МС-12 увез трех членов экипажа на Землю. МКС покинули Александр Овчинин, араб Хазаа аль-Мансури и американец Ник Хейг.МКС в последнее время используется по максимуму, поэтому проживание в тесных модулях большого количества людей является одним из экзаменов на выдержку. Неслучайно кто-то в предыдущие полеты намеренно сверлил отверстия в обшивке станции.Пять месяцев в тесноте пролетели быстро.

6 февраля МКС покинули Александр Скворцов, Кристина Кук и Лука Пармитано.  

Таким образом, сейчас на МКС осталось 3 человека:

Интересно, что из неопытных космонавтов в этот раз отправлен только американец Эндрю Морган — он в космос полетел первый раз. Россия уже предпочитает отправлять мужчин, которые имеют за плечами богатый космический опыт, новичков отправляют реже.

Итак, список экспедиции МКС-61 (3 человека):  

Командир:

  • Олег Скрипочка (25/26/47/48/60/61/62);

Бортинженеры:

  • Джессика Мейер (61/61/62);
  • Эндрю Морган (60/61/62).

Кто скоро прилетит на МКС: пока программа следующих полетов утверждается. 9 апреля к нынешним членам экипажа возможно присоединятся Кристофер Кэссиди, Андрей Бабкин, Николай Тихонов.

Фото и биографии россиян, которые побывали в космосе в последнее время

10 последних открытий в космосе

(согласно списку Терезы Корнелиус)

Чем сильнее развиваются современные технологии, тем больше открывается возможностей для того, чтобы больше узнать о нашей Вселенной. В последнее время стало возможным подтвердить такие факты о Вселенной, о которых раньше мы могли только догадываться. Вот список некоторых из недавних открытий в космосе. Наслаждайтесь!

10. Открыт новый спутник Плутона (P4)

 Теперь нам известно, что вокруг Плутона вращается четыре спутника.

Харон был открыт в 1978 году и является крупнейшим из спутников Плутона. Его диаметр, по современным оценкам, составляет 1205 км – чуть больше половины диаметра Плутона, а соотношение масс составляет 1:8. Для сравнения, соотношение масс Луны и Земли равняется 1:81.

Из-за такого малого соотношения масс Харон и Плутон часто рассматриваются в качестве двойной карликовой планеты. В 2005 году с помощью космического телескопа Хаббл обнаружили еще 2 спутника Плутона – Никту и Гидру. Предположительно диаметр Никты – 46 км, а Гидры – 61 км.

Открытие спутника Плутона произошло в 2011 году, когда Хаббл сфотографировал небесное тело, которое временно называется P4. Его размеры составляют от 13 до 34 км. Как удивительно, что Хаббл сфотографировал такое крошечное тело, находящееся на расстоянии более 3 миллиардов километров от нас!

 9. Гигантские космические магнитные пузыри

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

Я как-то с детства привык отслеживать интересные события, которые происходят в космической отрасли, включая разного рода запуски космических аппаратов, находки астрономов и прочее.

Надо сказать, за последние несколько лет космос стал гораздо ближе к человеку, если так можно выразиться. Люди снова заинтересовались Вселенной, и тем, что там происходит. В общем, в этом небольшом обзоре предлагаю ознакомиться с самыми интересными «космическими» событиями года.

Ее основатель, голландец Бас Лансдорп собирает средства на отправку команды людей к Марсу. При этом у программы есть интересный нюанс: обратного билета просто нет, люди отправляются на Красную планету в один конец.

Требуются добровольцы, и, что интересно, они находятся в большом количестве. Тысячи человек подают заявки на участие в этом проекте. В начале года было отобрано более тысячи кандидатов, котоыре, если и полетят, то только через несколько лет.

Вот модель того, что может ожидать добровольцев на Марсе:

Заселение Марса будет проходить в несколько этапов: создание посадочного модуля, создание и транспортировка модулей для жизни колонистов, транспортировка колонистов, освоение Марса.

Самая большая цифрова камера запущена в космос

Знаковым событием является запуск космического телескопа GAIA. Цель этого телескопа, вернее, его команды — составление наиболее точной карты нашей галактики изнутри. Другими словами, телескоп будет составлять детальнейший снимок Млечного пути.

Пройдет еще 2 с половиной месяца, и телескоп войдет в полностью рабочий режим, о чем, я надеюсь, смогу здесь написать :)

В соседней галактике найдена сверхновая

15 фактов о космосе, которые шокируют вас

Космические исследования в реальной жизни так же размыты, как и в кино. Это область, в которой не всегда можно получить точные данные. О размерах и масштабах Вселенной не знают даже лучшие ученые. Однако с каждый днем происходит все большее ее освоение.

Что все же известно исследователям о космосе, чего, возможно, еще не знаете вы?

Запись космических звуков

НАСА использует технологию, называемую ультразвуковой обработкой данных, чтобы принимать сигналы радиоволн, магнитных полей, а также плазменных волн. И преобразует эти сигналы в звуковые дорожки, чтобы «слышать», что происходит в отдаленном космосе.

Довольно жуткие звуки варьируются от мрачных всплесков до сигналов, напоминающих приближающийся космический корабль.

Синие закаты Марса

Что происходит с человеком в космосе?

Человечество давно мечтает покорить Марс. В октябре 2016 года НАСА заявило своей приоритетной целью отправку людей на Красную Планету к 2030-м годам.

Физиология человека и невесомость

Для того, что бы успешно спланировать осуществить миссию на Марс, ученые должны понимать, как космос влияет на физиологию человека при длительных космических полетах.

Те данные, которые известны науке в настоящий момент, позволяют сделать выводы, что нахождение в космосе однозначно сказывается на человеческом организме. Как в физическом, так и интеллектуальном плане. К тому же риски, связанные с космическими полетами, существенно различаются в разных условиях. Они будут разными на орбитальной космической станцией и космическим кораблем, направляющимся на Марс.

Физические проблемы

Факты про освоение космоса, о которых не все знают

10 любопытнейших фактов об освоении космоса.

Секретные слова

Во время первых полетов космонавты общались с Землей с помощью секретных слов, чтобы никто не мог догадаться, как все проходит. Такими словами служили названия цветов, фруктов и деревьев.

Например, космонавт Владимир Комаров в случае повышения радиации должен был сигналить: «Банан!».Для Валентины Терешковой (первой женщины-космонавта) пароль «Дуб» означал, что тормозной двигатель работает хорошо, а «Вяз» — что двигатель не работает.

Выход в открытый космос

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Тринадцать лет подряд Россия лидировала по количеству космических запусков. Но в 2016 году нас обогнали США и — впервые — Китай. В 2017 году одна частная компания SpaceX имеет шансы обогнать Россию по количеству запусков. Наше лидерство по этому параметру было предметом гордости, и его потеря стала поводом для расстройства. Насколько оно обосновано?

Количество пусков по странам с 2004 года

Большое количество российских запусков в последние годы имеет сразу несколько причин. Во-первых, развертывались прикладные спутниковые группировки — ГЛОНАСС для навигации, «Экспресс», «Ямал» для связи, «Ресурс» для дистанционного зондирования Земли, военные спутники. Во-вторых, активно запускались иностранные космические аппараты по коммерческим контрактам.

Когда в 90-х годах российские ракеты-носители вышли на мировой рынок, они оказались дешевыми и были очень востребованы.

Специально созданная компания ILS предлагала выгодные цены на «Протоны», и с 1996 года было произведено уже 98 пусков на самую коммерчески востребованную геостационарную орбиту. В-третьих, по пилотируемой программе каждый год стартует 4 «Союза» с космонавтами и 4–5 грузовых «Прогрессов», это уже как минимум 8 пусков в год.

Сейчас ГЛОНАСС развернута и требует меньшего количества запусков для поддержания группировки. С коммерческими контрактами ситуация ухудшилась: на рынок пусковых услуг пришла частная компания SpaceX, составив конкуренцию ценам ILS.

В 2016 году авария «Протона» не привела к потере полезной нагрузки, спутник был успешно выведен на целевую орбиту, но расследование происшествия наложилось на обнаружение неправильного припоя в двигателях, и в результате «Протон» не летал почти год.

Даже в пилотируемой программе убрали один грузовой «Прогресс», из-за чего пришлось сократить российский экипаж МКС с 3 человек до 2.

Парадоксально, но сокращение пусков является следствием и одной хорошей причины. В 80-е годы СССР производил в районе сотни пусков в год, но его связные спутники «Стрела» могли работать на орбите только полгода, а разведывательные «Зениты» — всего две недели.

Когда срок активного существования спутников настолько мал, он сводит на нет эффект от большого количества запусков. Сейчас наши спутники стали работать на орбите гораздо дольше, поэтому и запускать новые на замену нужно реже.

Разница во времени на Земле и в космосе

В 20 в. было доказано, почему отличается время в космосе и на Земле. Разница создается благодаря действию гравитационного поля.

До научных открытий, совершенных ученым Альбертом Эйнштейном, время считалось неизменной величиной. Люди думали, что оно всегда и везде протекает одинаково.

Все изменила Общая теория относительности — согласно данному научному труду, пространство и время связаны друг с другом, а минуты и секунды отсчитываются неодинаково для тел движущихся и находящихся в состоянии покоя.

Учёные США провели исследования изменения пространства. Эксперимент заключался в запуске спутника, который благодаря наличию специального оборудования измерял и высчитывал влияние нашей планеты на пространство, которое ее окружает. Действительно, Земля как бы деформирует пространство, находящееся рядом с ней. Credit: rutvet.ru.

Важность теории Эйнштейна

Вначале Эйнштейн назвал свою работу «К электродинамике движущихся тел». Теорией относительности она стала позже — когда научный мир, ознакомившийся с ней, сделал выводы, касающиеся «относительного» положения тел в пространстве.

Так, человек, находящийся на борту судна, к примеру на его палубе, бросающий камень по направлению к носовой части, не заметит разницы для себя, если корабль плывет или остается неподвижным. Объясняется феномен тем, что по отношению к кораблю местоположение человека всегда остается неизменным.

За десятилетний период с 1905 по 1915 год Эйнштейн разработал Общую теорию относительности, которая является одной из самых важных теорий в современной физике. Credit: shorts.ru.

Основные выводы

10 самых последних космических открытий

что происходит в космосе на данный момент
Наука

Чем совершеннее становятся технологии, тем больше возможностей открывается перед учеными и тем больше мы можем узнать о нашей Вселенной. С каждым годом космос открывает перед нами все больше своих тайн, в ближайшее время мы наверняка узнаем то, о чем раньше не могли даже догадываться. Узнайте о том, какие открытия в области космоса были сделаны в последние годы.

1) Еще один спутник Плутона

На сегодняшний день известно уже 4 спутника Плутона. Харон был открыт в 1978 году, и он является самым крупным его спутником. Диаметр этого спутника 1205 километров, что заставляет многих ученых полагать, что Плутон на самом деле является «двойной карликовой планетой».

Ничего нового не было слышно о ледяных телах, которые вращаются вокруг Плутона, до 2005 года, пока космический телескоп «Хаббл» не обнаружил еще 2 спутника – Никту и Гидру. Диаметр этих космических тел от 50 до 110 километров. Но самое удивительное открытие ждало ученых в 2011 году, когда «Хабблу» удалось запечатлеть еще один спутник Плутона, который временно называется P4. Его диаметр составляет всего от 13 до 34 километров.

Примечательным в данном случае является то, что «Хаббл» сфотографировал такой крошечный космический объект, который расположен на расстоянии около 5 миллиардов километров от нас.

2) Гигантские космические магнитные пузыри

Два космических аппарата НАСА «Войяжер» обнаружили магнитные пузыри в районе Солнечной системы, известной как Гелиосфера, которая расположена в 15 миллиардах километров от Земли.

В 1950-х годах ученые считали, что этот район космического пространства относительно ровный, но когда «Войяжер 1» достиг Гелиосферы в 2005, а «Войяжер 2» в 2008 году, они засекли турбулентность, которую образует магнитное поле Солнца, и там формируются магнитные пузыри, диаметром около 160 миллионов километров.

3) Хвост звезды Мира А

В 2007 году орбитальный космический телескоп GALEX сканировал Миру А, старую звезду — красного карлика, что являлось частью предстоящего проекта по сканированию всего неба в ультрафиолетовом свете.

Астрономы были шокированы, когда обнаружили что у Миры А имеется длинный хвост, тянущийся за ней, как за кометой, который имеет протяженность около 13 световых лет. Эта звезда двигается по Вселенной с необычайно большой скоростью, примерно 470 тысяч километров в час.

До этого считалось, что у звезд не бывает хвостов.

4) Вода на Луне

9 октября 2009 года Космический аппарат для наблюдения и зондирования лунных кратеров НАСА LCROSS обнаружил воду в холодном и постоянно находящимся в тени кратере на южном полюсе Луны.

LCROSS является зондом НАСА, который был создан для столкновения с лунной поверхностью, а маленький спутник, следующий за ним, должен был измерить химический состав материала, который поднялся вверх при столкновении.

После целого года анализа данных НАСА сообщило о том, что на нашем спутнике имеется вода в виде льда, которая находится на дне этого вечно темного кратера. Позже другие данные показали, что тонкий слой воды покрывает лунный грунт, по крайней мере, в некоторых областях Луны.

5) Карликовая планета Эрида

В январе 2005 года была открыта новая планета Солнечной системы Эрида, которая вызвала в астрономическом мире массу споров о том, что следует считать планетой вообще.

Эриду первоначально посчитали 10-й планетой Солнечной системы, но затем все объекты пояса Койпера и пояса астероидов приравняли к новому классу – карликовые планеты. Эрида находится за орбитой Плутона и имеет примерно такой же размер, хотя первоначально считалось, что она больше Плутона.

Известно, что у Эриды имеется один спутник, который назвали Дисномия. Пока Эрида и Дисномия считаются самыми дальними объектами Солнечной системы.

6) Следы водных потоков на Марсе

В 2011 году НАСА, предоставив фотографии Красной планеты, сделало заявление о том, что оно имеет свидетельства того, что на Марсе могла в прошлом течь вода, которая оставила следы. Действительно, на снимках видны длинные полосы, похожие на те, что оставляют в породах текущие потоки.

Ученые полагают, что эти потоки — соленая вода, которая разогревается во время летних месяцев и начинает стекать по поверхности. Признаки того, что на Марсе когда-то была жидкая вода, были обнаружены и раньше, однако впервые ученые заметили, что эти следы меняются в течение короткого периода времени.

7) Спутник Сатурна Энцелад и его гейзеры

В июле 2004 года космический аппарат «Кассини» вышел на орбиту вокруг Сатурна. После того, как миссии «Войяжер» приблизились к этому спутнику, исследователи решили запустить в данный район другой аппарат для более подробного исследования Энцелада.

После того как «Кассини» несколько раз пролетел мимо спутника в 2005 году, ученым удалось сделать ряд открытий, в частности, что в атмосфере Энцелада имеется водяной пар и сложные углеводородные соединения, которые выделяются из геологически активного района Южного Полюса.

В мае 2011 года ученые НАСА на конференции, посвященной этому спутнику, заявили, что Энцелад можно считать самым первым претендентом на обнаружение жизни.

8) Тёмный поток

Темный поток, обнаруженный в 2008 году, предоставил ученым больше вопросов, чем ответов. Скопления материи во Вселенной, как оказалось, двигаются на очень большой скорости в одном и том же направлении, что невозможно объяснить с помощью любой известной гравитационной силы в пределах обозримой части Вселенной. Этот феномен был назван «Темный поток».

Наблюдая за большими скоплениями галактик, ученые обнаружили около 700 галактических скоплений, двигающихся с определенной скоростью по направлению к отдаленной части Вселенной. Некоторые ученые даже осмелились предположить, что Темный поток двигается из-за давления, вызванного другой Вселенной. Однако некоторые астрономы вообще оспаривают существование темного потока.

9) Экзопланеты

Первые экзопланеты, то есть планеты, существующие за пределами Солнечной системы, были открыты в 1992 году. Астрономы открыли несколько мелких планет, вращающихся вокруг звезды Пульсар.

Первая гигантская планета была замечена в 1995 году возле близкой от нас звезды 51 Пегас, которая делала полный оборот вокруг этой звезды за 4 дня. К маю 2012 года в энциклопедии экзопланет было зарегистрировано уже 770 экзопланет. 614 из них являются частью планетарных систем и 104 – множественных планетарных систем.

К февралю 2012 года миссия НАСА «Кеплер» выявила 2321 неподтвержденных кандидата на звание экзопланет, которые связаны с 1790 звездами.

10) Первая планета в обитаемой зоне

В декабре 2011 года НАСА подтвердила сообщения об открытии первой планеты, которая расположена в обитаемой зоне, вращаясь вокруг своей родной звезды, похожей на Солнце. Планета получила название Kepler-22b. Ее радиус в 2,5 раза больше радиуса Земли, и она обращается вокруг своей звезды в пригодной для появления жизни зоне. Ученые пока не уверены относительно состава этой планеты, однако это открытие явилось серьезным шагом на пути к обнаружению похожих на Землю миров.

Источник: https://www.infoniac.ru/news/10-samyh-poslednih-kosmicheskih-otkrytii.html

10 заблуждений о космосе, в которые стыдно верить

что происходит в космосе на данный момент

Во многих фильмах можно увидеть такую картину: человек оказывается в открытом космосе без скафандра (либо с повреждённым скафандром) и быстро замерзает, превращаясь в хрупкую ледяную статую, трескающуюся от любого воздействия.

Что на самом деле. У космоса нет температуры. Он не холодный и не горячий — никакой : в вакууме нет конвекции и теплопроводности. Вообще, вакуум — хороший термоизолятор. Так что у астронавтов больше проблем с перегревом , чем с переохлаждением.

И если вы окажетесь в космосе без скафандра в тени планеты, то, скорее всего, испытаете лёгкую прохладу из‑за испарения воды с поверхности кожи. Но до твёрдого состояния точно не заморозитесь.

2. Люди могут лопнуть в космосе

Кадр из фильма «Вспомнить всё», 1990 год.

Бытует мнение, что в вакууме или в атмосфере с низким давлением, например на Марсе, человек может взорваться, как воздушный шарик. Глаза вылезут из орбит, сосуды полопаются, и незадачливый астронавт превратится в кровавое месиво.

Что на самом деле. Давление в вакууме отсутствует, и это может привести к тому, что ваши лёгкие лопнут , если вы не выдохнете, прежде чем выпрыгнуть из корабля. В крови начнут появляться газовые пузырьки (это называется эбуллизм ), на теле образуются отёки. Но кожа человека слишком упругая, и она не позволит вам взорваться.

Эксперименты на собаках показали, что в вакууме можно без последствий находиться до полутора минут, и после этого организм быстро восстановится. А вот более длительное пребывание летально из‑за гипоксии, то есть нехватки кислорода.

3. У Луны есть тёмная сторона

Тёмная сторона луны не такая уж тёмная. Снимок с зонда Lunar Reconnaissance Orbiter NASA, moon.nasa.gov

Когда люди говорят «тёмная сторона Луны», то представляют себе мрачное место, куда никогда не падает солнечный свет. Наверное, именно поэтому там строят свои базы нацисты и десептиконы.

Что на самом деле. Все стороны Луны освещаются Солнцем, и на ней есть день и ночь — правда, длятся они по две недели. Тем не менее у спутника Земли есть обратная сторона. Но из‑за того, что период вращения вокруг нашей планеты и вокруг собственной оси у Луны схожи, с Земли видно только одно её полушарие. А первые снимки другого были сделаны советской АМС «Луна‑3» ещё в 1959 году. И ничего особо таинственного там нет.

4. Чёрные дыры выглядят как воронки

Чёрная дыра в представлении художника, news.sky.com

Из‑за фильмов и картинок в интернете многие люди полагают, что чёрные дыры выглядят как вихрь, засасывающий всё вокруг себя. Или как воронка в раковине, куда стекает вода.

Что на самом деле. Впервые чёрную дыру показали реалистично в фильме «Интерстеллар», основываясь на теоретических моделях физика Кипа Торна. Уже позже NASA сделало первый её снимок с помощью системы из восьми радиотелескопов Event Horizon Telescope. В реальности чёрная дыра выглядит не как воронка, а как тёмная сфера, окружённая аккреционным диском из падающего на неё газа.

5. Солнце жёлтое

Снимок Солнца, сделанный астронавтом NASA Терри Вёртсом с борта МКС в 2015 году, space.com

Если вы попросите кого‑нибудь нарисовать наше светило, то начинающий художник непременно возьмёт жёлтый карандаш. Взгляните на Солнце, и убедитесь, что оно имеет такой оттенок.

Что на самом деле. Желтоватым Солнце делает наша атмосфера. И если взглянуть на снимки из космоса, становится понятно, что его цвет — белый . Но мы так привыкли считать Солнце жёлтым, что даже учёные классифицируют похожие на него звёзды как «жёлтые карлики» просто для удобства.

6. Первой в космос полетела собака Лайка

Героическая дворняга‑космонавт, infuture.ru

Кто первым полетел в космос? Конечно, Юрий Гагарин. А из братьев наших меньших? Собака по имени Лайка, это всем известно. Она была обычной дворнягой из приюта, отправившейся первой покорять космос.

Что на самом деле. Лайка действительно первой оказалась на орбите Земли. Но в космосе бывали живые существа и до неё. В феврале 1947 года американцы с помощью трофейной немецкой ракеты «Фау‑2» отправили в суборбитальный полёт несколько плодовых мушек (дрозофил), чтобы изучить на них воздействие космической радиации. Они долетели до высоты в 109 км, а границей космоса считается отметка в 80 км. Так что первыми его увидели мухи.

7. NASA потратило миллиарды на пишущую в космосе ручку

Та самая чудо‑ручка, spencerdub.me

Простыми ручками в космосе пользоваться нельзя, потому что чернила в стержне там не могут стекать вниз. И, согласно одной городской легенде , чтобы астронавты всё-таки смогли вести записи, NASA потратило 12 миллиардов долларов на изобретение специальной ручки. Она способна писать вверх ногами на любой поверхности при температуре от 0 до 300 °С. Советские же космонавты просто пользовались карандашами. Вот она, русская смекалка.

Что на самом деле. Поначалу и американцы, и русские пользовались в космосе карандашами, но это приводило к ряду проблем: частицы графита отслаивались и попадали в воздушные фильтры космических кораблей. А специальную ручку изобрёл Пол Фишер из Fisher Pen Company, и сделал он это независимо от NASA. Мужчина продал ведомству 400 штук по 2,95 доллара за каждую.

Наши космонавты тоже пользовались такими ручками. В своё время их закупали для работы на станции «Мир». Кстати, если хотите, можете тоже приобрести себе космическую ручку.

8. Через пояс астероидов трудно пролететь

Пояс астероидов в представлении художника, universetoday.com

Помните, как в «Звёздных войнах» Хан Соло мастерски пилотировал свой «Тысячелетний сокол», чтобы пробраться через пояс астероидов? Он умудрился обогнуть множество этих космических тел, да ещё и от погони имперских истребителей оторвался, хотя ежесекундно рисковал врезаться в парящие повсюду каменные глыбы.

Что на самом деле. В нашей Солнечной системе тоже есть свой пояс астероидов между орбитами Марса и Юпитера. Астрономы не уверены, сколько там каменных глыб, и называют приблизительное число в 10 миллионов. Но вы, даже не будучи крутым пилотом вроде Соло, легко пролетите сквозь них. Потому что среднее расстояние между астероидами в поясе — полтора миллиона километров. Это примерно в четыре раза больше, чем расстояние между Землёй и Луной.

Поэтому, чтобы в реальности врезаться в астероид, понадобится немалое старание и тщательные орбитальные манёвры. Вероятность не то что столкновения, но и просто незапланированного сближения космического корабля с каменной глыбой составляет менее чем один к миллиарду.

9. Космические корабли летают по прямой

Кадр из фильма «Прометей», 2012 год

В фильмах космические аппараты легко перемещаются из одного места в другое, просто развернувшись прямо к цели и включив двигатели. Точно так же, как автомобили или корабли на Земле. А если космолёту надо сесть на планету, он просто устремляется в её атмосферу на полной скорости.

Что на самом деле. В реальности космические аппараты двигаются от одной орбиты к другой по дугообразной гомановской траектории. И у них при этом отключены двигатели. Они включаются два раза, для разгона в начале и для торможения в конце, остальной путь корабль проделывает по инерции.

Если хотите самостоятельно поуправлять шаттлом и вживую увидеть движение по гомановской траектории, попробуйте поиграть в космический симулятор Kerbal Space Program. Он даёт наглядное представление об основах орбитальной механики.

Да, и ещё: корабли, собирающиеся приземлиться, сходят с орбиты, развернувшись двигателями по ходу движения, чтобы затормозить. В голливудских блокбастерах вроде «Прометея» такого не покажут, чтобы у зрителя не возникло вопроса, почему челноки летают задом наперёд.

10. Летом тепло, потому что Земля ближе к Солнцу

Солнце и Земля, sunearthday.nasa.gov

Смена времён года вызвана меняющимся расстоянием от Земли до Солнца. Логично, правда? К сожалению, иногда так думают не только маленькие дети, но и вполне взрослые люди.

Что на самом деле. Орбита Земли не совсем круглая — она эллиптическая. Наша планета достигает перигелия (точки на орбите, ближайшей к Солнцу) в январе и афелия (самой дальней точки от Солнца) примерно через шесть месяцев. Если бы от этого зависела погода, у нас было бы лето в январе и зима в июле.

Сезоны меняются из‑за наклона оси вращения Земли относительно её орбитальной плоскости (эклиптики). Движение по орбите действительно вызывает температурные колебания в пределах 5 °С, но этого недостаточно, чтобы устроить смену времён года.

Источник: https://Lifehacker.ru/zabluzhdeniya-o-kosmose/

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие российские космонавты находятся в космосе в 2020 годуи какую работу они выполняют на орбите? Кто полетит следующим экипажем,расписание долговременных космических экспедиций на МКС.

Работа по освоению космоса – одна из важнейших в России,большая часть научной деятельности и экспериментов, связанных с ней, являютсясильнейшим катализатором для остальных сфер развития.

 

Несмотря на определенные сложности с финансированием и даже авариями в последнее время, работа продолжается, и российские астронавты продолжают летать на орбиту, поддерживая мировое признание России, и внося свою лепту в мировое развитие.

Кто сейчас в космосе? 

Кто сейчас в космосе? 

25 сентября космический корабль «Союз-15» привез на МКС трех новых космонавтов — россиянина Олега Скрипочку, американку Джессику Меир и гражданина ОАЭ Хаззаа Аль-Мансури. 

Их радостно (но втайне с долей уныния в душе) встретили шестеро членов предыдущей экспедиции — Алексей Овчинин, Ник Хейг, Кристина Кук, Александр Скворцов (Россия), Лука Парминтано (Италия) и Эндрю Морган (США). Тогда на маленькой станции оставались целых 9 человек.

3 октября корабль МС-12 увез трех членов экипажа на Землю. МКС покинули Александр Овчинин, араб Хазаа аль-Мансури и американец Ник Хейг.МКС в последнее время используется по максимуму, поэтому проживание в тесных модулях большого количества людей является одним из экзаменов на выдержку. Неслучайно кто-то в предыдущие полеты намеренно сверлил отверстия в обшивке станции.Пять месяцев в тесноте пролетели быстро.

6 февраля МКС покинули Александр Скворцов, Кристина Кук и Лука Пармитано.  

Таким образом, сейчас на МКС осталось 3 человека:

Интересно, что из неопытных космонавтов в этот раз отправлен только американец Эндрю Морган — он в космос полетел первый раз. Россия уже предпочитает отправлять мужчин, которые имеют за плечами богатый космический опыт, новичков отправляют реже.

Итак, список экспедиции МКС-61 (3 человека):  

Командир:

  • Олег Скрипочка (25/26/47/48/60/61/62);

Бортинженеры:

  • Джессика Мейер (61/61/62);
  • Эндрю Морган (60/61/62).

Кто скоро прилетит на МКС: пока программа следующих полетов утверждается. 9 апреля к нынешним членам экипажа возможно присоединятся Кристофер Кэссиди, Андрей Бабкин, Николай Тихонов.

Фото и биографии россиян, которые побывали в космосе в последнее время

Фото и биографии россиян, которые побывали в космосе в последнее время

В настоящее время стать космонавтом проще, чем раньше, носчастливчиков все же очень мало. За год на орбите бывает не более 10-15 человек,из России – 5-6 человек. Однако, примечательно, что берут в настоящее времякосмос не только бывших летчиков, но и людей других специальностей. Итак, в последние годы в космосе следующие российские космонавты выполняли свою работу:

Олег Скрипочка — родился в 1969 году. Закончил МГТУ имени Баумана. Работал в НПО «Энергия» слесарем, в 1997 года зачислен в отряд космонавтов-испытателей. В космосе третий раз. 

Алексей Овчинин — весьма опытный космонавт, 1971 года рождения. Уже летал к МКС в 2016 году. Закончил Борисоглебское училище летчиков, Ейское высшее училище, дополнительное образование получил в Академии народного хозяйства. Занимался подготовкой пилотов на самолетах Як-52 и Л-39. 

Александр Скворцов — российский летчик, космонавт уже неоднократно бывавший в космосе. Герой РФ. Служил в истребительном полку ПВО, летчик 1 класса. Окончил Ставропольское училище летчиков и военную академию ПВО имени Жукова. 

Олег Кононенко — профессиональный космонавт, 1964 года рождения. Это уже его четвертый полет. Закончил Харьковский авиационный институт, является специалистом по двигателям. С 1996 года приступил к космической подготовке. 

 Сергей Прокопьев — 1975 года рождения. Выпускник Тамбовского и Оренбургского военных авиационных училищ, имеет также диплом бухгалтера Мичуринского аграрного университета. Бывший командир бомбардировщиков Ту-22 и Ту-160. В космосе первый раз.   

Олег Артемьев – опытный специалист, командир, 1970 года рождения, второй раз на орбите. Родился в Риге, сын военного инженера. С детства увлекался авиацией, занимался спортом и борьбой. Закончил университет им. Баумана, академию госслужбы. С 1998 года работал в РКК «Энергия», занимался подготовкой экипажей к полетам, а в 2003 году сам стал космонавтом. 

Антон Шкаплеров – участник трех космических экспедиций, 1972 года рождения. В 1994 году окончил Высшее Авиационное училище в Качинске, в 1998 – Военную академию им. Жуковского, в 2018 году – академию госслужбы. Работал летчиком-инструктором группы пилотажа «Воздушные гусары», с начала 2000-х переведен в космическое подразделение.

Что интересно – оба последних пилота заканчивали академиюГосударственной службы при президенте РФ по гуманитарной специальности вкачестве дополнительного образования. Это может быть, как негласным требованиемиметь третью нетехническую специальность, либо при данной академии онипроходили какую-то специальную подготовку, например, при участии спецслужб.  

Какую работу выполняют космонавты на орбите?  

Какую работу выполняют космонавты на орбите?  

В составе последней экспедиции 61/62 основной задачей перед космонавтами стоит инсталляция оборудования, поступившего с последней грузовой доставкой. МКС постоянно развивается и растет, поэтому в космосе в ближайшие месяцы будут производить большой «ремонт». 

Один из самых впечатляющих достижений в ходе последней экспедиции — печать на 3Д-принтере внутренних органов мыши.  

Российские и американские космонавты на Международнойстанции выполняют работы по стыковке новых модулей, берут пробы с внешнихпанелей корабля, проводят биологические и физические опыты. Программы каждогополета составляются задолго до существования старта, перед с космонавтамиставятся задачи по увеличению безопасности, также на высоте идёт проверка новыхтехнологий.  

В ходе экспедиции 60/61 в 2019-2020 году предусмотренследующий список экспериментов и научных направлений:

Наименование Количество процедур
Физические и химические взаимодействия, тестирование материалов и сред в условиях космоса. 6
Исследование планеты Земля и Галактики. 6
Работа в открытом космосе. 13
Биоинженерия, биотехнологии, растениеводство. 11
Освоение космоса и наблюдение. 17
Образовательная и исследовательская работа. 7

Всего предусмотрено более 300 опытов и исследований. Обычно сегменты деятельности по странам на МКС имеют своиакценты. Например, американцы и европейцы сосредоточены на биологических имедицинских опытах, российские занимаются энергетикой, японцы — робототехникой.Однако, россияне тоже занимаются изучением биологических и химических областей.

Также за последние годы был внесен немалый вклад в мировую науку поисследованию Солнечной системы, проведены опыты по биологической коррозии,особенностям последствий малых инерционных сил в условиях невесомости.

Американские астронавты, конечно, нередко добиваются больших результатов в видуувеличенных экипажей и большего бюджета. Однако, россияне выполняют сложнейшие работы в открытом космосе.  

Так что, на вопрос какие космонавты находятся в космосе в2020 году сейчас, можно ответить однозначно, что сейчас в космосе только 1 человек из россиян — это Олег Скрипочка, остальные — иностранцы.

Источник: https://novosti-online.info/2761-kakie-kosmonavty-nahodyatsya-v-kosmose.html

10 последних открытий в космосе

10 последних открытий в космосе

(согласно списку Терезы Корнелиус)

Чем сильнее развиваются современные технологии, тем больше открывается возможностей для того, чтобы больше узнать о нашей Вселенной. В последнее время стало возможным подтвердить такие факты о Вселенной, о которых раньше мы могли только догадываться. Вот список некоторых из недавних открытий в космосе. Наслаждайтесь!

10. Открыт новый спутник Плутона (P4)

10. Открыт новый спутник Плутона (P4)

 Теперь нам известно, что вокруг Плутона вращается четыре спутника.

Харон был открыт в 1978 году и является крупнейшим из спутников Плутона. Его диаметр, по современным оценкам, составляет 1205 км – чуть больше половины диаметра Плутона, а соотношение масс составляет 1:8. Для сравнения, соотношение масс Луны и Земли равняется 1:81.

Из-за такого малого соотношения масс Харон и Плутон часто рассматриваются в качестве двойной карликовой планеты. В 2005 году с помощью космического телескопа Хаббл обнаружили еще 2 спутника Плутона – Никту и Гидру. Предположительно диаметр Никты – 46 км, а Гидры – 61 км.

Открытие спутника Плутона произошло в 2011 году, когда Хаббл сфотографировал небесное тело, которое временно называется P4. Его размеры составляют от 13 до 34 км. Как удивительно, что Хаббл сфотографировал такое крошечное тело, находящееся на расстоянии более 3 миллиардов километров от нас!

 9. Гигантские космические магнитные пузыри

 9. Гигантские космические магнитные пузыри

НАСА запустило в космос два зонда Voyager для изучения пограничной области гелиосферы, находящейся на расстоянии примерно 9 миллиардов километров от Земли.

Вопреки сформировавшимся за пятьдесят лет гипотезам, наблюдатели столкнулись на границе Солнечной системы не с линейным и постепенно убывающим магнитным полем, а с кипящей пеной из локально намагниченных областей протяженностью сотни миллионов километров каждый – подвижной ячеистой структурой, внутри которой линии магнитного поля постоянно разрываются, рекомбинируются и образуют новые области – магнитные «пузыри».

8. Не только у кометы есть хвост

8. Не только у кометы есть хвост

Специалисты NASA, работающие с научным спутником GALEX, в 2007 году сообщили об удивительном открытии. Звезда, носящая имя «Удивительная» – Мира, полностью оправдала свое название.

Сделанные GALEX в ультрафиолетовом диапазоне снимки позволили установить, что звезда, находящаяся в созвездии Кита, не только летит сквозь пространство с огромной скоростью, но еще и оставляет за собой хвост, как у кометы, длиной 13 световых лет.

 До этого открытия считалось, что звезды не могут иметь хвосты.

7. На Луне найдена вода

7. На Луне найдена вода

9 октября 2009 LCROSS – космический аппарат НАСА для наблюдения и зондирования лунных кратеров, часть его упала в районе кратера Кабеус, который находится на темной стороне Луны, на южном ее полюсе. В результате падения выброшено облако из газа и пыли.

LCROSS пролетел сквозь выброшенное облако, анализируя вещество, поднятое со дна кратера. Оказалось, облако частиц содержало не меньше 100 килограммов воды. Особенно неожиданным для учёных стало наличие на Луне большого количества ртути и серебра.

 Позже данные с трех космических аппаратов показали, что тонкая пленка воды  в некоторых областях покрывает поверхность почвы Луны.

 6. Эрис

 6. Эрис

В январе 2005 года на самом краю Солнечной системы была обнаружена маленькая планета Эрис, что вызвало дискуссии среди ученых о том, каково же на самом деле определение планеты. Названа открытая планета Эрис – в честь богини раздора в греческой мифологии.

 Эрис изначально считалась 10-й планетой Солнечной системы, но позднее она и другие объекты, расположенные в поясе Койпера, объединили в новый класс: карликовые планеты.

 Эрис находится за пределами орбиты Плутона и примерно такого же размера (диаметр планеты 2 326 километров) как Плутон.

Поверхность Эрис имеет необычайную яркость, ученые считат, что она покрыта  ледовой поверхностью. Поверхностный слой льда должен постоянно обновляться. Если бы этого не происходило, то под воздействием солнечных лучей и ударов метеоритов, она бы давно потеряла свою яркость. По предположениям, Эрис имеет атмосферу, в которой повышенное содержание метана.

Именно он периодически замерзая и оттаивая производит обновление поверхностного слоя льда. Эрис имеет один известный спутник, названный Дисномия (в греческой мифологии Дисномия – дочь богини Эрис). Период обращения планеты вокруг Солнца составляет 560 лет. Температура на поверхности около минус 250 градусов.

 Эрис и Дисномия наиболее удаленные из известных природных объектов в Солнечной системе.

 5. Вода на Марсе

 5. Вода на Марсе

В 2011 году НАСА сделало заявление, приложив к нему фотографии, что на Марсе может быть «текущая вода». Была сделана покадровая съемка, чтобы показать, как жидкость бежала по склонам гор, расположенных в средних широтах южного полушария Красной планеты. Темные полосы увеличиваются в размерах в период весны и лета и вновь пропадают к зиме.

Наиболее обоснованно предположение ученых, что это потоки соленой воды, которая достаточно сильно нагревается, когда на планете летние месяцы. Льды расплавляются и заливают поверхность. Предполагаемые ручьи шириной от полуметра до пяти метров достигают в длину нескольких сотен метров.

 Признаки того, что на Марсе когда-то была проточная вода, были обнаружены и раньше, но это первый случай, когда такое событие наблюдалось в течение короткого периода времени.

 4. Энцелад и его вулканы

 4. Энцелад и его вулканы

Энцелад – шестой по размерам спутник Сатурна. Был открыт в 1789 году. Благодаря наблюдениям с «Вояджеров» было установлено, что диаметр Энцелада составляет примерно 500 км и что поверхность Энцелада отражает почти весь падающий на неё солнечный свет.

В 2005 году межпланетный зонд «Кассини» несколько раз прошёл вблизи Энцелада. Удалось рассмотреть своеобразный богатый водой шлейф, испаряющийся с южного полюса.

Также оказалось, что Энцелад – один из трёх небесных тел во внешней Солнечной системе (наряду со спутником Юпитера Иои спутником Нептуна Тритоном), на котором наблюдались активные извержения.

В 2011 году учёные NASA на «Enceladus Focus Group Conference» заявили, что Энцелад «наиболее жилое место в Солнечной системе за пределами Земли за все время её существования»

 3. Темный поток

 3. Темный поток

Темный поток открыт в 2008 году и таит в себе больше вопросов, чем ответов. Этот поток представляет собой скопление галактик, которые под воздействием неизвестной силы на огромной скорости, около 1 тыс. км в час, мчатся к границе видимой Вселенной. Эти скопления – часть потока, который растянулся приблизительно на 3 млрд. световых лет.

Движение темного потока не может быть объяснено ни одной из известных гравитационных сил в наблюдаемой Вселенной. Одно из возможных объяснений открытого явления предполагает, что причина потока – притяжение огромного скопления материи. Но Лаура Мерсини-Хоутон из Университета штата Северная Каролина (США) выдвигает еще более сенсационное объяснение.

 С ее точки зрения, «темный поток» – признак присутствия другой вселенной, соседствующей с нашей.

Пока эти объяснения и даже само существование «темного потока» единогласного признания не получили, и вокруг них идут горячие научные дискуссии.

 2. Планеты вне солнечной системы – экзопланеты

 2. Планеты вне солнечной системы – экзопланеты

Первые экзопланеты, были обнаружены в 1992 году.  Это планеты, обращающиеся вокруг звезды за пределами Солнечнойсистемы. Экзопланеты чрезвычайно малы и тусклы по сравнению со звёздами. Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой. Сейчас такие планеты стали открывать благодаря усовершенствованным научным методам.

К 17 мая 2012 года подтверждено существование 770 экзопланет в 613 планетных системах. По проекту «Кеплер»на 21 декабря 2011 года числится ещё 2326 экзопланет. Общее количество экзопланет в галактике Млечный Путь по новым данным от 100 миллиардов, из которых приблизительно от 5 до 20 миллиардов возможно являются «землеподобными». Большинство известных экзопланет – газовые гиганты и более походят на Юпитер, чем на Землю.

1. Первая планета в обитаемой зоне

1. Первая планета в обитаемой зоне

В декабре 2011 года, НАСА подтвердили обнаружение первой планеты, которая находятся в зоне жизни звезды почти идентичной Солнцу. Ученые назвали планету Кеплер-22b. Она расположена в «зоне Златовласки», в 600 световых лет от нас.

Планета имеет радиус примерно в 2,5 раза больше радиуса Земли, и вращается в комфортной обитаемой зоне.

Ученые не уверены в составе планеты: преобладают ли на ней скальные породы, жидкость или газ, но открытие оказалось огромным шагом в поиске «близнеца Земли».

Источник: https://evivid.ru/10_poslednih_otkrytiy_v_kosmose.html

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

Я как-то с детства привык отслеживать интересные события, которые происходят в космической отрасли, включая разного рода запуски космических аппаратов, находки астрономов и прочее.

Надо сказать, за последние несколько лет космос стал гораздо ближе к человеку, если так можно выразиться. Люди снова заинтересовались Вселенной, и тем, что там происходит. В общем, в этом небольшом обзоре предлагаю ознакомиться с самыми интересными «космическими» событиями года.

Ее основатель, голландец Бас Лансдорп собирает средства на отправку команды людей к Марсу. При этом у программы есть интересный нюанс: обратного билета просто нет, люди отправляются на Красную планету в один конец.

Требуются добровольцы, и, что интересно, они находятся в большом количестве. Тысячи человек подают заявки на участие в этом проекте. В начале года было отобрано более тысячи кандидатов, котоыре, если и полетят, то только через несколько лет.

Вот модель того, что может ожидать добровольцев на Марсе:

Заселение Марса будет проходить в несколько этапов: создание посадочного модуля, создание и транспортировка модулей для жизни колонистов, транспортировка колонистов, освоение Марса.

Самая большая цифрова камера запущена в космос

Самая большая цифрова камера запущена в космос

Знаковым событием является запуск космического телескопа GAIA. Цель этого телескопа, вернее, его команды — составление наиболее точной карты нашей галактики изнутри. Другими словами, телескоп будет составлять детальнейший снимок Млечного пути.

Пройдет еще 2 с половиной месяца, и телескоп войдет в полностью рабочий режим, о чем, я надеюсь, смогу здесь написать :)

В соседней галактике найдена сверхновая

В соседней галактике найдена сверхновая

Сверхновая звезда — это звезда, которая собирается взорваться, причем за короткое время такое светило увеличивает светимость до светимости небольшой галактики. Появление таких звезд — редкость, очень большая редкость. И необычайной удачей можно назвать то, что земные астрономы смогли найти сверхновую в соседней галактике.

Эта звезда находится на расстоянии 12 миллионов световых лет (соответственно, взорвалась она как раз 12 миллионов лет назад, а сейчас мы наблюдаем эту картину благодаря свету, дошедшему до нас).

Звезда эта за короткое время увеличила светимость в несколько порядков, со светимости 16 до светимости 6 (то есть, рассмотреть ее можно в обычный бинокль).

Opportunity на Марсе проработал 10 лет

Opportunity на Марсе проработал 10 лет

Представьте себе, марсоход, срок службы которого был рассчитан на 3 месяца, проработал на Марсе уже более 10 лет. При этом он остается полностью функциональным, оборудование этого марсохода из строя не выходило.

Вполне может быть, что марсоход сможет проработать на Красной Планете еще несколько лет, прежде, чем что-то таки случится (хотелось бы надеяться, что ничего такого не произойдет, но все же марсоход — очень сложный механизм, что-то когда-то да сломается).Этот трудолюбивый аппарат сделал для науки уже столько, чего ни один аппарат, устройство, до настоящего момента не делал.

 За 10 лет марсоход проехал 38,7 километров, смог «увидеть» 3556 марсианских рассвета, сделать много тысяч фотографий, переданных на Землю, а также получил доказательства существования воды на поверхности Марса. В прошлом году, в начале лета, как раз и были получены доказательства существования на Марсе (в прошлом) пресной воды.

Шестигранный шторм на Сатурне

Шестигранный шторм на Сатурне

Большой вихрь на Юпитере — буря, равной которой нет на Земле. Это атмосферное явление существует уже несколько сотен лет, и астрономы наблюдают за его развитием. Но вот Сатурн до настоящего момента считался спокойной планетой, газовым гигантом.

А ведь именно там был обнаружен шестигранный шторм, размер которого составляет 30 тысяч километров в поперечнике. Атмосферные массы вращаются там со скоростью в 320 километров в час. Это — пока что максимум для Солнечной системы.

Шестигранный шторм даже получил собственное название — планетарный гексагон.

Rosetta — высадка на комету

Rosetta — высадка на комету

Такое событие, как посещение космическим аппаратом какой-либо планеты/космического тела, является уникальным. И именно такое событие должно будет произойти в ноябре этого года.

Несколько лет назад в космос был выпущен космический аппарат «Розетта» — это межпланетная космическая станция с модулем высадки на борту.

В начале этого года «Розетта», так называется станция, «проснулась» спустя два года, и теперь она, и ее посадочный модуль готовы к работе. Правда, работать устройствам придется не сейчас, а ближе к осени, когда планируется высадка на комету Чурюмова-Герасименко.

Если высадка пройдет хорошо, гладко, ученые получат огромное количество данных о строении и происхождении комет.

Кстати, посмотреть на то, что собой представляет миссия «Розетта» можно вот по этой ссылке (это 3D модель всей миссии, причем модель интерактивная, все можно покликать, подвигать).

Составлена точная панорама Млечного Пути

Составлена точная панорама Млечного Пути

Благодаря современному оборудованию и развитию разного рода технологий, ученые смогли составить панораму Млечного Пути, увидев даже те участки, которые скрыты за космической пылью.

Из-за большого количества космической пыли, обычно увидеть, что за этой пылью, невозможно, а благодаря инфракрасному телескопу это стало возможным. Оказалось, что наша Галактика «пронизана с пузырьками» – полостями излучающими радиацию и ветер.

Данные позволяют ученым построить более глобальную модель звезд и образование звезд в галактике, которое называют «импульсом» Млечного Пути.

Обнаружена крупнейшая звездаКрупнейшая из всех, найденных астрономами до сих пор. Эта звезда расположена в 16 тысячах световых лет от нас. Ее размер — в полторы тысячи раз (!) больше Солнца. Это красный сверхгигант, который, в конечном итоге, должен превратиться в сверхновую.

Кроме того, эта звезда окружена водородным облаком, которое светится.

Подледный океан  на Энцеладе

Подледный океан  на Энцеладе

Энцелад — это спутник Сатурна, причем спутник маленький. Он вроде как не представлял интереса для ученых, но сейчас оказалось, что Энцелад — интереснейший объект. Дело в том, что астрономы «засекли» на Энцеладе выбросы жидкости и пара.

Считалось, что все это может быть влиянием Сатурна, который якобы нагревает поверхность своего спутника, путем гравитационных возмущений. Оказалось же, что эти выбросы — следствие существования океана, подледного огромного океана из воды, в котором, теоретически, может существовать жизнь.

Диаметр самого Энцелада составляет 500 километров, а океан (скорее, подледное озеро), залегает  на глубине 30-40 километров.

Источник: https://xage.ru/chto-sluchilos-v-kosmose-v-etom-godu-sobytija-na-zemle-i-v-kosmicheskom-prostranstve-/

15 фактов о космосе, которые шокируют вас

15 фактов о космосе, которые шокируют вас

Космические исследования в реальной жизни так же размыты, как и в кино. Это область, в которой не всегда можно получить точные данные. О размерах и масштабах Вселенной не знают даже лучшие ученые. Однако с каждый днем происходит все большее ее освоение.

Что все же известно исследователям о космосе, чего, возможно, еще не знаете вы?

Запись космических звуков

Запись космических звуков

НАСА использует технологию, называемую ультразвуковой обработкой данных, чтобы принимать сигналы радиоволн, магнитных полей, а также плазменных волн. И преобразует эти сигналы в звуковые дорожки, чтобы «слышать», что происходит в отдаленном космосе.

Довольно жуткие звуки варьируются от мрачных всплесков до сигналов, напоминающих приближающийся космический корабль.

Синие закаты Марса

Синие закаты Марса

Факт о подобном явлении стал известен в 2015 году, когда удалось получить первое цветное фото этой планеты.

Ученые поясняют визуальный эффект свечением мелких частиц в атмосфере Марса, которые позволяют цветовым голубым волнам проникать в атмосферу эффективнее, чем «более длинным», таким как красный, желтый и оранжевый.

Посылка в космос безумно дорогая

Посылка в космос безумно дорогая

Разделив стоимость запуска на вес груза, можно получить ошеломляющие цифры. Так, один лимон, отправленный в космические просторы, будет стоит 2000 долларов.

Еще не так давно каждые 450 грамм груза стоили 10 000 долларов. Теперь же цены резко возросли: до 43 180 $ для космического корабля «Лебедь» и 27 000 $ для новых носителей SpaceX. Таким образом, для полета в космос бутылки воды нужно будет заплатить в пределах от 9100 до 43 180 долларов.

Космический мусор

Космический мусор

Космическое пространство наполнено многочисленным мусором, таким как части разрушенных ракет или неработающие спутники. Эти объекты все еще продолжают вращаться вокруг Земли со скоростью в 10 раз большей, чем скорость выстрела.

За космическим мусором наблюдают, чтобы виновные в его распространении несли за это ответственность. Однако его количество уже превысило 23 000 объектов. Лидирующими в этом списке являются США, Россия и Китай. Под ответственностью каждой из трех стран немногим меньше 4000 объектов.

Мусор этот опасен возможным столкновением, способным вызвать огромное мусорное облако из-за цепной реакции. Что и показывает нам фильм «Гравитация».

Сохранение следов на Луне

Сохранение следов на Луне

Лунные породы разрушаются настолько медленно (на 10 мм в 1 млн лет), что следы космонавтов могут сохраняться на ее поверхности в течение 10-100 млн лет.

Именно столько могут просуществовать на нашем естественном спутнике следы астронавтов, прилетевших на Луну на «Аполлоне-11» в 1969 году.

Температура космического пространства

Температура космического пространства

Здесь не всегда холодно. В самых отдаленных уголках температура может опускаться до -270 °C. Но если приблизиться к Земле, где Солнце окружает все своими лучами, то можно наблюдать повышение температуры до 120 °C.

Скафандры астронавтов белого цвета, чтобы они могли отражать тепло.

Год короче дня

Год короче дня

Венера вращается довольно медленно, в противоположном от Земли направлении. Полное ее вращение проходит за 243 наших дня, что и является ее обычным днем.

Но она расположена близко к Солнцу, потому проходит вокруг него всего за 225 дней. Таким образом, получается, что год на Венере немного короче дня.

Мкс размером с футбольное поле

Мкс размером с футбольное поле

Международная космическая станция является самым большим объектом, отправленным людьми в космос. Длина ее — 108 метров, а вес — почти 420 000 кг.

Во время исследований здесь побывало 230 человек из 18 разных стран.

Без скафандра

Без скафандра

Вопреки факту, показанному в фильме «Гравитация», без скафандра в космосе вы продержались бы не больше 15 секунд.

Ровно на столько хватит всего кислорода, что есть у вас крови. После этого воздух в легких будет расширяться из-за отсутствия давления в атмосфере, что разорвет ткани. Также в незащищенном организме произойдет закипание крови и отсутствие контроля кишечника.

Космические преступники

Космические преступники

Существуют определенные законы, согласно которым нельзя выводить на орбиту оружие массового поражения, а все исследования должны проводиться лишь в мирных целях. Любая страна несет ответственность за запускаемый в космос объект и ущерб, который он может нанести.

Поэтому ООН следит за космическим пространством и находящимися в нем объектами с людьми. Какие-либо противоправные действия могут сделать астронавта космическим преступником.

Космическое пространство

Космическое пространство

Можно подумать, что кроме планет и звезд здесь ничего нет. Несмотря на то что это недалеко от истины, космическое пространство все же не совсем представляет собой вакуум.

В нем есть небольшая плотность частиц. Это облака космической плазмы, звездной пыли и космических лучей.

Чернота пространства

Чернота пространства

Казалось бы, такое огромное количество звезд должно было заполнить пространство светом, а оно черное. В 1823 году немецкий астроном решил, что яркость статичной Вселенной, равномерно заполненной звездами, должна быть равна яркости солнечного диска. Явление назвали «парадоксом Ольсберга».

Позже оказалось, что никакой равномерной наполненности звездами нет, потому как некоторые из них существовали не так долго, чтобы их свет еще мог достигать Земли сейчас, а Вселенная имеет способность расширяться. Отсюда и чернота пространства, которое не может быть равномерно освещено.

Неоспоримый лидер

Неоспоримый лидер

Солнце составляет 99,8 % всей массы Солнечной системы. Все остальное, включая нашу Землю, в сравнении с ним — просто пылинки.

Неудивительно, что оно миллиардами лет удерживает около себя планеты.

Черные дыры

Черные дыры

Согласно новому исследованию, Млечный Путь содержит десятки тысяч черных дыр. Эти объекты невозможно обнаружить в спокойном состоянии.

Однако когда они взаимодействуют со звездой, ученые могут находить их с помощью рентгеновских лучей.

Септиллион звезд

Септиллион звезд

Примерно такое количество звезд насчитывает Вселенная. Кстати, это число содержит 24 нуля после единицы. За девять лет наблюдений ученые выявили 10 000 галактик в самых темных глубинах Вселенной.

Только наша галактика Млечного Пути содержит около 100 млрд звезд. Умножив это число на количество галактик, получили предполагаемую цифру.

Однако это еще не окончательное количество, ведь остается много неизведанного космического пространства. По мнению ученых, эта цифра будет расти в их подсчетах, когда технологии будут более усовершенствованы для открытия новых галактик.

Нашли нарушение? Пожаловаться на содержание

Источник: https://FB.ru/post/environment/2018/5/13/26598

Что происходит с человеком в космосе?

Что происходит с человеком в космосе?

Человечество давно мечтает покорить Марс. В октябре 2016 года НАСА заявило своей приоритетной целью отправку людей на Красную Планету к 2030-м годам.

Физиология человека и невесомость

Физиология человека и невесомость

Для того, что бы успешно спланировать осуществить миссию на Марс, ученые должны понимать, как космос влияет на физиологию человека при длительных космических полетах.

Те данные, которые известны науке в настоящий момент, позволяют сделать выводы, что нахождение в космосе однозначно сказывается на человеческом организме. Как в физическом, так и интеллектуальном плане. К тому же риски, связанные с космическими полетами, существенно различаются в разных условиях. Они будут разными на орбитальной космической станцией и космическим кораблем, направляющимся на Марс.

Физические проблемы

Физические проблемы

У космонавтов будут опухшие лица (из-за того, что жидкости тела распространяются более равномерно). Они будут страдать от уменьшения плотности костной ткани и потери минеральных веществ. Сюда можно записать недостаток сна и солнечного света. И еще увеличение уровня железа и нарушенную координацию. 

Проект НАСА по изучению зрения и внутричерепного давления космонавтов показал, что многие из них испытывают ухудшение зрения после завершения полета. Это вызвано воздействием невесомости на мозг и спинномозговую жидкость. Эти расстройства могут длиться годами.

Исследования НАСА

Исследования НАСА

Космонавты, которые проводили длительные периоды времени в космосе, имеют структурные изменения глаз. Еще у них обнаружены аномально высокие уровни цереброспинальных жидкостей в головном мозге. Было продемонстрировано, что космический полеты также влияют на хрупкие окончания зрительных нервов.

Существуют свидетельства того, что воздействие галактического космического излучения увеличивает риск развития сердечно-сосудистых заболеваний. Возрастает риск рака, расстройств центральной нервной системы и острого лучевого синдрома. И эти риски могут быть даже серьезнее, чем считалось раньше.

Одно из проведенных исследований показало, что космонавты, покорившие Луну, в четыре раза чаще умирают от сердечно-сосудистых заболеваний. Если сравнивать с теми, которые не вылетали за пределы защитной магнитосферы Земли.

Кроме того, ученые все чаще исследуют психологические проблемы, связанные с космическими полетами. Космонавты, которые отправятся в дальние космические путешествия — на Луну, Марс и за его пределы, скорее всего будут изолированы во враждебной и стрессовой обстановке вместе с другими людьми, не имея возможности вернуться на Землю или быстро спастись.

Жизнь на Марсе

Жизнь на Марсе

Так что же происходит с нашим мозгом в космосе?

Один из экспериментов NASA по нейрокогнитивной эффективности сравнивал мозг космонавтов до и после пребывания на МКС в течение шести месяцев, используя сканирование FMRI. Ученые обнаружили снижение связанности моторных и вестибулярных областей мозга. Они необходимы для координации движения у космонавтов, осуществивших длительные космические полеты.

В условиях невесомости мозг продолжает посылать такие сигналы телу, как если бы оно находилось в нормальных условиях гравитации. И тогда тело начинает думать, что оно падает или находится в перевернутом положении. Через некоторое время мозг более или менее приспосабливается к новой среде. Но при возвращении на Землю изменение рефлексов может вызвать длительные проблемы.

Серия исследовательских программ НАСА

Серия исследовательских программ НАСА

Американское космическое агентство проводит специальные исследования. Ученые пытаются выявить, охарактеризовать и предотвратить проблемы с поведенческим здоровьем, связанные с космическими полетами. В исследовании используются ситуации, сопоставимые с земными. Такие как помещение групп людей в полной изоляции от внешнего мира на длительные периоды времени. При этом исследуются сон и усталость, проблемы сплоченности групп и возможные неблагоприятные психиатрические условия.

В 2014 году исследование Джона Хопкинса обнаружило признаки когнитивных нарушений в результате условий, которым подвергаются космонавты. Особенно сильное влияние оказывает космическое излучение, постоянно воздействующее на людей в космосе.

В октябре 2016 года UC Irvine было проведено исследование. Оно показало, что воздействие галактических космических лучей может вызвать долгосрочные когнитивные проблемы для космонавтов. Включая хроническую деменцию. В нескольких тестах, в которых были использованы грызуны, обнаружилось, что животные страдают как от воспаления головного мозга, так и от уменьшения взаимосвязи между нейронами даже через шесть месяцев после первоначального воздействия.

Животные также плохо выполняли тесты памяти. Они демонстрировали повышенную тревогу и страх, с уменьшенной способностью компенсировать стрессовые и неприятные ассоциации.

Эти выводы, по понятным причинам, вызвали опасения по поводу запланированного полета на Марс. Ведь космонавты надолго окажутся вне магнитного поля Земли, защищающего их на борту МКС. Они могут столкнуться с повышенными уровнями стресса и тревоги, наряду с нарушенными возможностями принятия решений и утратой возможности работы в режиме многозадачности. А это потенциально важные свойства психики при работе в чрезвычайных ситуациях.

Эти проблемы представляют собой головную боль для НАСА. Космические корабли обеспечивают очень ограниченную защиту от космических лучей. Их можно остановить только серьезной массивной защитой.

Установка на всем космическом корабле защитного внешнего экрана будет финансово нецелесообразной. Идея защитить изолированную часть космического корабля, в которой космонавты проводили были основную часть времени, более жизнеспособна, и вполне могла бы решить часть проблемы.

Тем не менее космонавты по-прежнему будут уязвимы к событиям солнечных бурь и вспышек. Их нелегко предсказать.

Манипуляция мозгами космонавтов

Манипуляция мозгами космонавтов

Одна из трудностей в изучении влияния космоса на интеллект космонавтов, в частности космическое излучение, заключается в том, что многие факторы, влияющие на них, обусловлены стрессовой обстановкой космического корабля. Эти факторы включают многие проблемы. Это нарушенный сон, тяжелые умственные нагрузки, высокий уровень углекислого газа и микрогравитация. В среднем, космонавты спят менее 6 часов в сутки. И должны концентрироваться и тренироваться в течение нескольких часов в день.

Типичная экспедиция на Марс будет длиться около трех лет. Это означает, что космонавты будут находиться в ограниченном пространстве с группой людей в течение очень долгого времени. Без возможности вести в режиме реального времени общение с семьей и друзьями с Земли. В настоящее время несколько компаний по заказу НАСА разрабатывают как лекарственные препараты, так и разнообразные методики для преодоления таких проблем.

В ситуации, когда космонавты учатся решать свои межличностные конфликты только с помощью компьютерной терапии и психоактивных веществ, будет трудно предсказать, что может случиться, если эти способы будут неэффективны или вызовут зависимость. Смогут ли космонавты сотрудничать и эффективно работать в течение нескольких месяцев, если они будут зависеть от таких методов лечения?

В будущем

В будущем

Космические путешествия захватывали воображение человечества на протяжении веков. И перед появившимися возможности и ресурсами для отправки людей в космос будет трудно устоять.

Эти попытки будут только ускорять исследования вопросов влияния космоса на неврологию и физиологию человека. И позволят находить способы, которыми наши мозги и тела будут приспосабливаться к отдаленным и отличным от Земли средам. Тем, где происходила вся наша эволюционная история.

Они, возможно, так же приведут к рассмотрению более дорогостоящих технических решений. Таких как использование искусственной гравитации для путешествий по маршруту Земля-Марс и Марс-Земля. Или более быстрый перелет (хотя и дорогостоящий с точки зрения энергетики, но позволяющий достичь Марса меньше чем за три месяца). Или может строительство удобных больших подземных жилых объектов на Марсе.

Источник: https://alivespace.ru/chto-proishodit-s-chelovekom-v-kosmose/

Факты про освоение космоса, о которых не все знают

Факты про освоение космоса, о которых не все знают

10 любопытнейших фактов об освоении космоса.

Секретные слова

Секретные слова

Во время первых полетов космонавты общались с Землей с помощью секретных слов, чтобы никто не мог догадаться, как все проходит. Такими словами служили названия цветов, фруктов и деревьев.

Например, космонавт Владимир Комаров в случае повышения радиации должен был сигналить: «Банан!».Для Валентины Терешковой (первой женщины-космонавта) пароль «Дуб» означал, что тормозной двигатель работает хорошо, а «Вяз» — что двигатель не работает.

Выход в открытый космос

Выход в открытый космос

Следующей задачей после полета Гагарина стал выход в открытый космос. Первым это сделал Алексей Леонов во время полета на космическом корабле «Восход-2».

Тогда никто не знал, как правильно вести себя в невесомости.

Выйдя в космос, Леонов оттолкнулся от шлюза, и его сильно закрутило, но страховочный трос удержал астронавта. Его ждала еще одна проблема: скафандр неожиданно сильно раздулся, и Леонов не мог вернуться на корабль.

Он просто не помещался в люк, пока не снизил давление воздуха в скафандре.

Из-за этого выход в космос длился не 12 минут, как планировалось, а в два раза дольше.

Сила притяжения и космические скорости

Сила притяжения и космические скорости

Космодромы строят как можно ближе к экватору, чтобы ракета при взлете могла использовать силу вращения Земли.

Это важно, потому что улететь в космос очень сложно. Массивные космические тела, такие, как планеты, с огромной силой удерживают все окружающее.

Чтобы улететь от Земли на расстояние, с которого она не сможет притянуть вас обратно, нужно набрать вторую космическую скорость.

При первой космической скорости невозможно улететь от Земли, но можно выйти на околоземную орбиту и вращаться вокруг нашей планеты, не падая и не улетая. Именно так делают все искусственные спутники Земли, в том числе МКС.

МКС

МКС

Международную космическую станцию (МКС) начали строить в 1998 году, а первые космонавты поселились на ней 31 октября 2000 года.

МКС собирали 10 лет как огромный, сложный и очень дорогой конструктор. Ее длина — 110 метров. Одновременно на МКС живут и работают шесть человек. МКС в полном смысле этого слова — международная станция, в этом проекте принимают участие 23 страны. За сутки

МКС облетает вокруг Земли 16 раз, поэтому космонавты видят 16 восходов и закатов.

Астронавты-рекордсмены

Астронавты-рекордсмены

Обеспечить существование космонавта на орбитальной станции очень сложно. На первых станциях экипажи находились не больше месяца, а на МКС живут теперь полгода.

Самый длительный в мире полет совершил Валерий Поляков — 438 суток (14 месяцев) подряд на станции «Мир».А мировой рекорд пребывания в космосе принадлежит Геннадию Падалке — за пять полетов он провел на орбите 878 суток (2 года и 5 месяцев).

Невесомость

Невесомость

В невесомости многое меняется. Например, увеличивается расстояние между позвонками и люди вырастают. Был случай, когда человек стал выше на 10,5 см!

А еще в невесомости очень легко передвигаться — космонавты просто летают внутри космической станции. Поэтому мышцы теряют силу, а кости становятся хрупкими. Больше всего страдают мышцы ног. Чтобы не разучиться ходить, космонавты принимают витамины и каждый день занимаются физкультурой. Они тренируются на беговой дорожке, к которой притянуты жгутами, чтобы не улететь.

Снимки из космоса

Снимки из космоса

Космические аппараты летают высоко над Землей, но с них хорошо видно все, что происходит на планете, — как будто перед вами живая карта.

Множество спутников постоянно фотографируют Землю и тем самым помогают составлять карты, прогнозировать погоду, предупреждать о бурях и извержениях вулканов, наблюдать миграции животных и рыб, отслеживать загрязнения природы.

Фотографии из космоса используются также для сельскохозяйственных, экологических и многих других задач.

Приземление

Приземление

Многие космонавты говорят, что спуск оставляет самые яркие впечатления от всего космического полета. Через иллюминатор они видят пламя, которое охватывает корабль во время прохождения плотных слоев атмосферы.

На Землю корабль опускается на большом парашюте, но он раскрывается не сразу, чтобы не было слишком сильного рывка.

Вначале раскрывается совсем маленький парашют, он вытягивает за собой второй — побольше, и только потом раскрывается главный большой парашют. Весь спуск на парашюте занимает 15 минут.

Восстановление

Восстановление

Сразу после возвращения астронавта на Землю начинается курс восстановления. На это уходит столько же времени, сколько человек провел на орбите, а иногда и больше.

Нужно заново учиться держать равновесие, тренировать мышцы и укреплять сердце.

Послание для инопланетян

Послание для инопланетян

В 1977 году были запущены американские космические аппараты «Вояджер I» и «Вояджер II». Тридцать лет они летели по Солнечной системе, изучая планеты, а в 2007 году покинули ее пределы и продолжают лететь дальше.

К каждому «Вояджеру» прикрепили алюминиевую коробку с посланием для инопланетян в виде позолоченного диска.

На диске записана информация о нас и нашей планете: музыка, приветствия на разных языках, фотографии с видами Земли, научные данные о человеке.

Источник: https://weekend.rambler.ru/read/42979356-fakty-pro-osvoenie-kosmosa-o-kotoryh-ne-vse-znayut/

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Тринадцать лет подряд Россия лидировала по количеству космических запусков. Но в 2016 году нас обогнали США и — впервые — Китай. В 2017 году одна частная компания SpaceX имеет шансы обогнать Россию по количеству запусков. Наше лидерство по этому параметру было предметом гордости, и его потеря стала поводом для расстройства. Насколько оно обосновано?

Количество пусков по странам с 2004 года

Большое количество российских запусков в последние годы имеет сразу несколько причин. Во-первых, развертывались прикладные спутниковые группировки — ГЛОНАСС для навигации, «Экспресс», «Ямал» для связи, «Ресурс» для дистанционного зондирования Земли, военные спутники. Во-вторых, активно запускались иностранные космические аппараты по коммерческим контрактам.

Когда в 90-х годах российские ракеты-носители вышли на мировой рынок, они оказались дешевыми и были очень востребованы.

Когда в 90-х годах российские ракеты-носители вышли на мировой рынок, они оказались дешевыми и были очень востребованы.

Специально созданная компания ILS предлагала выгодные цены на «Протоны», и с 1996 года было произведено уже 98 пусков на самую коммерчески востребованную геостационарную орбиту. В-третьих, по пилотируемой программе каждый год стартует 4 «Союза» с космонавтами и 4–5 грузовых «Прогрессов», это уже как минимум 8 пусков в год.

Сейчас ГЛОНАСС развернута и требует меньшего количества запусков для поддержания группировки. С коммерческими контрактами ситуация ухудшилась: на рынок пусковых услуг пришла частная компания SpaceX, составив конкуренцию ценам ILS.

В 2016 году авария «Протона» не привела к потере полезной нагрузки, спутник был успешно выведен на целевую орбиту, но расследование происшествия наложилось на обнаружение неправильного припоя в двигателях, и в результате «Протон» не летал почти год.

Даже в пилотируемой программе убрали один грузовой «Прогресс», из-за чего пришлось сократить российский экипаж МКС с 3 человек до 2.

Парадоксально, но сокращение пусков является следствием и одной хорошей причины. В 80-е годы СССР производил в районе сотни пусков в год, но его связные спутники «Стрела» могли работать на орбите только полгода, а разведывательные «Зениты» — всего две недели.

Когда срок активного существования спутников настолько мал, он сводит на нет эффект от большого количества запусков. Сейчас наши спутники стали работать на орбите гораздо дольше, поэтому и запускать новые на замену нужно реже.

Когда срок активного существования спутников настолько мал, он сводит на нет эффект от большого количества запусков. Сейчас наши спутники стали работать на орбите гораздо дольше, поэтому и запускать новые на замену нужно реже.

Также параллельно идет процесс замены ракет-носителей. Старые «Космос» и «Циклон» уже не летают, конверсионные «Днепры» тоже постепенно заканчивают свою карьеру. И если новый легкий «Союз-2.1в», впервые полетевший в конце 2013 года, в июне 2017 стартовал уже в третий раз, то у «Ангары» дела идут менее успешно.

После двух испытательных пусков в 2014 году она до сих пор не начала летать с настоящими спутниками. Дело не только в устранении неизбежных замечаний после первых — пусть и успешных — пусков. Центр имени Хруничева, на котором производится «Ангара», переносит производство ракет в Омск и сокращает площади в Москве на 80 %.

На фоне этих пертурбаций задержка с серийным производством, увы, закономерна.

Аварийность

Аварийность

Распространено мнение, что наши ракеты постоянно падают. Но статистика это не подтверждает. Если посмотреть относительную аварийность (количество аварий, разделенное на количество ракет), то видно, что показатели российской космонавтики находятся на сравнимом с другими странами уровне.

Относительная аварийность ведущих космических держав с 2004 года, потеря полезной нагрузки 1 балл, авария без потери полезной нагрузки — 0,5 балла

Кроме Европейского космического агентства, отличающегося почти нулевой аварийностью (причем единственное происшествие в 2014 году связано с нештатной работой российского блока «Фрегат» — спутники были выведены на нерасчетную орбиту, но успешно эксплуатируются), Россия, США и Китай показывают примерно одинаковую аварийность.

Почему же миф о постоянно падающих наших ракетах так живуч?

Почему же миф о постоянно падающих наших ракетах так живуч?

Во-первых, работа СМИ построена так, что успешный запуск проходит с минимальным освещением, а вот авария обращает на себя гораздо больше внимания.

Во-вторых, космонавтика воспринимается как составная часть престижа страны, поэтому есть силы, которые всячески подхватывают новости об авариях, чтобы использовать их для доказательства того, что «в стране все плохо». Существует целый список мемов, который регулярно достается по любому поводу и лично у меня уже в зубах навяз.

В-третьих, сама психология человека тяготеет к черно-белому мышлению, а для рационального анализа требуются интеллектуальные усилия. Ну и в-четвертых, несмотря на действительно хорошие усилия Роскосмоса по пиару, многое можно было бы сделать лучше.

Пиар

Пиар

Можно услышать мнение, что дела у Роскосмоса идут хорошо, но он не умеет пиариться. Это не совсем верно — пиар-активность Роскосмоса довольно заметна. У агентства есть активно ведущиеся страницы в социальных сетях. Космонавты участвуют в эфирах, ведут свои страницы, и, например, в Instagram фотографии с орбиты весьма популярны. В 2016 году большие усилия были затрачены на слоган «Подними голову!».

Много хороших слов можно сказать о ТВ Роскосмоса. Они выпускают на  две еженедельные передачи (до недавнего времени одна выходила на «России 24»), делают хорошие фильмы. Благодаря им мы можем подробно узнать о том, как тренируются космонавты.

Много хороших слов можно сказать о ТВ Роскосмоса. Они выпускают на  две еженедельные передачи (до недавнего времени одна выходила на «России 24»), делают хорошие фильмы. Благодаря им мы можем подробно узнать о том, как тренируются космонавты.

Также они создали хорошую видеоэнциклопедию «Космонавты» и сумели выпустить очень симпатичные ролики по астрономии «а что, если бы».

В то же время возникает ощущение, что работе не хватает ресурсов и системности. Например, старт пилотируемого корабля — важное и волнующее событие. Но нет его равномерного и заметного освещения. Иногда выделяется больше ресурсов, пуск комментируют и пытаются обратить на него больше общественного внимания. Но временами, наоборот, качество работы проседает.

Когда 28 июля стартовал пилотируемый «Союз», Северо-Западная Федерация космонавтики (энтузиасты-популяризаторы, не входящие в структуру Роскосмоса) организовала показ пуска на фестивале «Старкон». Но конкретно в этот раз качество трансляции было одним из худших за несколько последних лет, и это смазало старания людей.

Увы, но за равномерно качественным освещением пуска приходится идти на NASA TV.

К сожалению, не заметно, чтобы на пиар выделялись серьезные ресурсы. Доходит до смешного — больше пятидесяти лет ракеты семейства «Р-7» летали без бортовых камер. Европейское космическое агентство в 2014 году на свои деньги купило пару комплектов камер, поставило их на приобретенные российские ракеты и получило шикарную картинку разделения боковых блоков первой ступени.

Роскосмос один раз поставил камеры на ракету, стартовавшую с космодрома «Восточный» в 2016 году, и все. И это при том, что кадры с ракеты в реальном времени показывают не только блестяще владеющая пиаром SpaceX, но даже Китайское космическое агентство.

Ну и, наконец, в чем-то с пиаром Роскосмосу банально не повезло. Самый зоркий телескоп, «Спектр-Р», который видит в тысячу раз лучше «Хаббла», работает в радиодиапазоне, и его результаты выглядят абсолютно не зрелищно при всей научной уникальности.

Ну и, наконец, в чем-то с пиаром Роскосмосу банально не повезло. Самый зоркий телескоп, «Спектр-Р», который видит в тысячу раз лучше «Хаббла», работает в радиодиапазоне, и его результаты выглядят абсолютно не зрелищно при всей научной уникальности.

Изображение галактики OJ287

Хорошо и плохо

Хорошо и плохо

Космическая отрасль любой страны имеет свои сильные и слабые стороны — кто-то достиг многого в одном, у кого-то преимущества в другом, и у всех свои проблемы.

Сильные стороны:

  1. Российская космонавтика имеет развитую прикладную составляющую. Одна из двух глобальных навигационных систем, геостационарные и низкоорбитальные системы связи, метеорологические спутники и спутники дистанционного зондирования Земли, группировки военных спутников — все это у нас есть. По количеству работающих спутников Россия занимает третье место после США и Китая.
  2. Однозначно сильной стороной является пилотируемая космонавтика. Корабль «Союз» — надежный и эффективный, и даже после начала полетов американских пилотируемых кораблей будет неплохо смотреться на их фоне. Он может быть не особо комфортным, но без проблем проработает до появления нового корабля «Федерация». Огромное количество знаний и технологий наработано по орбитальным станциям и долговременному пребыванию человека в космосе.
  3. Сохраняется первенство в отдельных направлениях. Например, у нас лучшие кислородно-керосиновые двигатели для ракет и отличные электрореактивные (ионные, плазменные) двигатели для спутников. Ракеты-носители «Протон» и «Союз» имеют огромную наработанную статистику эксплуатации, при этом постоянно модернизируются.
  4. Разрабатываются потенциально прорывные технологии — ядерный буксир, детонационные двигатели, гиперзвуковые технологии (пока что для военного применения, в будущем могут использоваться для космоса), метановые двигатели.

Слабые стороны:

  1. Нет собственных научных аппаратов за пределами земной орбиты. Да, они не могут пока принести прямую прибыль, но это интересные научные данные и много пиара. Частично эта проблема компенсируется участием в совместных проектах, когда наши приборы стоят на аппаратах других космических агентств — детекторы нейтронов на орбитах Луны и Марса, а также на «Кьюриосити» — наши. Проект «Экзомарс» является совместным с Европейским космическим агентством.
  2. Есть провалы в некоторых технологических направлениях. Несмотря на то что мы умеем производить кислородно-водородные двигатели, они до сих пор не переходят из лабораторий на серийные ракеты. А эти двигатели очень выгодны на верхних ступенях. Есть проблемы с элементной базой для космических аппаратов.
  3. Из лидера по выгодности коммерческих запусков наша космонавтика перешла в состав соревнующихся. Сейчас разрабатывается модификация «Протона» — «Протон Средний», который должен будет повысить конкурентоспособность на рынке пусковых услуг. Теоретически экономически эффективной должна была стать «Ангара», но без регулярных пусков нельзя сказать, оправдаются ли эти расчеты.
  4. Нет четкого видения плана развития космонавтики на несколько лет вперед. Внезапные новости о том, что, например, на «Восточном» не будет пилотируемой «Ангары», а космонавтов будет возить с Байконура еще не спроектированная до конца ракета «Союз-5» (она же «Феникс»/«Сункар») заставляют ожидать новых внезапных изменений.

Космонавтика России, увы, не находится «впереди планеты всей» — есть области, где нас обгоняют. В то же время и хоронить ее категорически не верно — работа идет активно и достаточно неплохо. В ближайшие годы Россия даже при инерционном движении останется в списке ведущих космических государств (США, Россия, Китай) и агентств (Европейское космическое агентство, 22 страны).

Источник: https://knife.media/russia-in-space/

Разница во времени на Земле и в космосе

Разница во времени на Земле и в космосе

В 20 в. было доказано, почему отличается время в космосе и на Земле. Разница создается благодаря действию гравитационного поля.

До научных открытий, совершенных ученым Альбертом Эйнштейном, время считалось неизменной величиной. Люди думали, что оно всегда и везде протекает одинаково.

Все изменила Общая теория относительности — согласно данному научному труду, пространство и время связаны друг с другом, а минуты и секунды отсчитываются неодинаково для тел движущихся и находящихся в состоянии покоя.

Учёные США провели исследования изменения пространства. Эксперимент заключался в запуске спутника, который благодаря наличию специального оборудования измерял и высчитывал влияние нашей планеты на пространство, которое ее окружает. Действительно, Земля как бы деформирует пространство, находящееся рядом с ней. Credit: rutvet.ru.

Важность теории Эйнштейна

Важность теории Эйнштейна

Вначале Эйнштейн назвал свою работу «К электродинамике движущихся тел». Теорией относительности она стала позже — когда научный мир, ознакомившийся с ней, сделал выводы, касающиеся «относительного» положения тел в пространстве.

Так, человек, находящийся на борту судна, к примеру на его палубе, бросающий камень по направлению к носовой части, не заметит разницы для себя, если корабль плывет или остается неподвижным. Объясняется феномен тем, что по отношению к кораблю местоположение человека всегда остается неизменным.

За десятилетний период с 1905 по 1915 год Эйнштейн разработал Общую теорию относительности, которая является одной из самых важных теорий в современной физике. Credit: shorts.ru.

Основные выводы

Основные выводы

Существует 2 основополагающих принципа, вытекающих из Общей теории относительности:

  1. Гравитационные поля создают пространственно-временное искривление.
  2. Для каждого объекта, находящегося в движении, время идет медленнее, чем для того, который остается в покое.

Благодаря релятивистскому замедлению времени для движущихся с ненулевой скоростью объектов любые физические процессы в нем происходят не так быстро, как в статическом положении.

Одним из принципов Теории относительности является пространственно-временное искривление. На схеме видно, как Солнце и другие планеты своей массой, как бы продавливают пространство вокруг себя, изменяя его. Credit: spacetime.ws.

Практический пример

Практический пример

Существует доказательство того, что для человека, летящего самолетом, время течет медленнее, чем для людей, которые находятся на Земле в состоянии покоя. Но этой разницы никто не почувствует, ведь она составит не более миллиардной доли секунды.

Ситуация меняется, когда скорость движущегося объекта многократно увеличивается.

Так, ракета, летящая со скоростью света, способна за 1 год преодолеть расстояние, составляющее 100 и более лет по земным меркам. Для самого космонавта, находящегося внутри такой ракеты, минутные стрелки двигались бы так же, как и всегда, — замедление заметили бы только земляне, каким-либо образом увидевшие часы, установленные в кабине корабля.

С другой стороны, космонавт, в этот момент посмотревший из иллюминатора на Землю и увидевший на ее поверхности часы, обратил бы внимание на их замедленный ход.

Несмотря на это, в действительности замедление возникает только у космонавта. Это связано с большой скоростью летящей ракеты и тем, что точки отсчета для корабля и планеты остаются неравноправными, ведь Земля постепенно передвигается по прямой траектории, а летательный аппарат перемещается с ускорением.

Искривление пространства и времени как причина относительности

Искривление пространства и времени как причина относительности

Любой физический предмет, обладающий ненулевым весом, изменяет вокруг себя пространственно-временные показатели.

Рядом с таким небольшим объектом, как яблоко, искривление минимально, а явные изменения происходят только в пространстве, окружающем массивные тела.

На фотографии — изображение одного квазара. Его свет, искривляется пространством вблизи массивной черной дыры (посередине) и доходит до нас в виде четырех отдельных пятен. Время рядом с черной дырой будет сильно замедлено. Credit: телескоп «Хаббл», NASA.

Земля своей массой создает гравитационное поле такой силы, что для объектов, находящихся на земной орбите, время проходит медленнее, чем на поверхности планеты.

Наличие временного несоответствия было выявлено при отправке сообщений со спутников на Землю.

Ощутимое пространственно-временное искривление возникает вблизи любых массивных тел — планет, звезд. Это было доказано опытным путем.

Свет квазара, расположенного неподалеку от мощной черной дыры, искривляется, время в той области также замедляется.

Это видно по тем пятнам, которые проявляются для земного наблюдателя через неравные временные периоды.

Уничтожение стереотипов

Уничтожение стереотипов

Из всего вышесказанного можно сделать вывод: время в космосе протекает по-разному.

Рядом с крупными объектами оно идет медленнее, а вдали от них, в пространстве без звезд и черных дыр, — быстрее.

Все это в корне рушит стереотип, согласно которому время представляется константой, некой постоянной величиной.

Когда скорость объекта приближается к скорости света, внутреннее время объекта, согласно расчётам, замедляется. Credit: spacetime.ws./v-kosmose.com.

Интересные факты

Интересные факты

Согласно теории относительности, любой предмет, на который действует гравитация, падает прямолинейно и равномерно.

Мяч, по которому ударили, движется не по дугообразной, а по прямой траектории. Он летит вверх и падает обратно на Землю из-за пространственно-временного искривления, поскольку траектории подброшенного предмета и планеты в установленный момент сходятся в 1 точке.

Атомные часы на Земле и в космосе

10 самых последних космических открытий

что происходит в космосе на данный момент
Наука

Чем совершеннее становятся технологии, тем больше возможностей открывается перед учеными и тем больше мы можем узнать о нашей Вселенной. С каждым годом космос открывает перед нами все больше своих тайн, в ближайшее время мы наверняка узнаем то, о чем раньше не могли даже догадываться. Узнайте о том, какие открытия в области космоса были сделаны в последние годы.

1) Еще один спутник Плутона

На сегодняшний день известно уже 4 спутника Плутона. Харон был открыт в 1978 году, и он является самым крупным его спутником. Диаметр этого спутника 1205 километров, что заставляет многих ученых полагать, что Плутон на самом деле является «двойной карликовой планетой».

Ничего нового не было слышно о ледяных телах, которые вращаются вокруг Плутона, до 2005 года, пока космический телескоп «Хаббл» не обнаружил еще 2 спутника – Никту и Гидру. Диаметр этих космических тел от 50 до 110 километров. Но самое удивительное открытие ждало ученых в 2011 году, когда «Хабблу» удалось запечатлеть еще один спутник Плутона, который временно называется P4. Его диаметр составляет всего от 13 до 34 километров.

Примечательным в данном случае является то, что «Хаббл» сфотографировал такой крошечный космический объект, который расположен на расстоянии около 5 миллиардов километров от нас.

2) Гигантские космические магнитные пузыри

Два космических аппарата НАСА «Войяжер» обнаружили магнитные пузыри в районе Солнечной системы, известной как Гелиосфера, которая расположена в 15 миллиардах километров от Земли.

В 1950-х годах ученые считали, что этот район космического пространства относительно ровный, но когда «Войяжер 1» достиг Гелиосферы в 2005, а «Войяжер 2» в 2008 году, они засекли турбулентность, которую образует магнитное поле Солнца, и там формируются магнитные пузыри, диаметром около 160 миллионов километров.

3) Хвост звезды Мира А

В 2007 году орбитальный космический телескоп GALEX сканировал Миру А, старую звезду — красного карлика, что являлось частью предстоящего проекта по сканированию всего неба в ультрафиолетовом свете.

Астрономы были шокированы, когда обнаружили что у Миры А имеется длинный хвост, тянущийся за ней, как за кометой, который имеет протяженность около 13 световых лет. Эта звезда двигается по Вселенной с необычайно большой скоростью, примерно 470 тысяч километров в час.

До этого считалось, что у звезд не бывает хвостов.

4) Вода на Луне

9 октября 2009 года Космический аппарат для наблюдения и зондирования лунных кратеров НАСА LCROSS обнаружил воду в холодном и постоянно находящимся в тени кратере на южном полюсе Луны.

LCROSS является зондом НАСА, который был создан для столкновения с лунной поверхностью, а маленький спутник, следующий за ним, должен был измерить химический состав материала, который поднялся вверх при столкновении.

После целого года анализа данных НАСА сообщило о том, что на нашем спутнике имеется вода в виде льда, которая находится на дне этого вечно темного кратера. Позже другие данные показали, что тонкий слой воды покрывает лунный грунт, по крайней мере, в некоторых областях Луны.

5) Карликовая планета Эрида

В январе 2005 года была открыта новая планета Солнечной системы Эрида, которая вызвала в астрономическом мире массу споров о том, что следует считать планетой вообще.

Эриду первоначально посчитали 10-й планетой Солнечной системы, но затем все объекты пояса Койпера и пояса астероидов приравняли к новому классу – карликовые планеты. Эрида находится за орбитой Плутона и имеет примерно такой же размер, хотя первоначально считалось, что она больше Плутона.

Известно, что у Эриды имеется один спутник, который назвали Дисномия. Пока Эрида и Дисномия считаются самыми дальними объектами Солнечной системы.

6) Следы водных потоков на Марсе

В 2011 году НАСА, предоставив фотографии Красной планеты, сделало заявление о том, что оно имеет свидетельства того, что на Марсе могла в прошлом течь вода, которая оставила следы. Действительно, на снимках видны длинные полосы, похожие на те, что оставляют в породах текущие потоки.

Ученые полагают, что эти потоки — соленая вода, которая разогревается во время летних месяцев и начинает стекать по поверхности. Признаки того, что на Марсе когда-то была жидкая вода, были обнаружены и раньше, однако впервые ученые заметили, что эти следы меняются в течение короткого периода времени.

7) Спутник Сатурна Энцелад и его гейзеры

В июле 2004 года космический аппарат «Кассини» вышел на орбиту вокруг Сатурна. После того, как миссии «Войяжер» приблизились к этому спутнику, исследователи решили запустить в данный район другой аппарат для более подробного исследования Энцелада.

После того как «Кассини» несколько раз пролетел мимо спутника в 2005 году, ученым удалось сделать ряд открытий, в частности, что в атмосфере Энцелада имеется водяной пар и сложные углеводородные соединения, которые выделяются из геологически активного района Южного Полюса.

В мае 2011 года ученые НАСА на конференции, посвященной этому спутнику, заявили, что Энцелад можно считать самым первым претендентом на обнаружение жизни.

8) Тёмный поток

Темный поток, обнаруженный в 2008 году, предоставил ученым больше вопросов, чем ответов. Скопления материи во Вселенной, как оказалось, двигаются на очень большой скорости в одном и том же направлении, что невозможно объяснить с помощью любой известной гравитационной силы в пределах обозримой части Вселенной. Этот феномен был назван «Темный поток».

Наблюдая за большими скоплениями галактик, ученые обнаружили около 700 галактических скоплений, двигающихся с определенной скоростью по направлению к отдаленной части Вселенной. Некоторые ученые даже осмелились предположить, что Темный поток двигается из-за давления, вызванного другой Вселенной. Однако некоторые астрономы вообще оспаривают существование темного потока.

9) Экзопланеты

Первые экзопланеты, то есть планеты, существующие за пределами Солнечной системы, были открыты в 1992 году. Астрономы открыли несколько мелких планет, вращающихся вокруг звезды Пульсар.

Первая гигантская планета была замечена в 1995 году возле близкой от нас звезды 51 Пегас, которая делала полный оборот вокруг этой звезды за 4 дня. К маю 2012 года в энциклопедии экзопланет было зарегистрировано уже 770 экзопланет. 614 из них являются частью планетарных систем и 104 – множественных планетарных систем.

К февралю 2012 года миссия НАСА «Кеплер» выявила 2321 неподтвержденных кандидата на звание экзопланет, которые связаны с 1790 звездами.

10) Первая планета в обитаемой зоне

В декабре 2011 года НАСА подтвердила сообщения об открытии первой планеты, которая расположена в обитаемой зоне, вращаясь вокруг своей родной звезды, похожей на Солнце. Планета получила название Kepler-22b. Ее радиус в 2,5 раза больше радиуса Земли, и она обращается вокруг своей звезды в пригодной для появления жизни зоне. Ученые пока не уверены относительно состава этой планеты, однако это открытие явилось серьезным шагом на пути к обнаружению похожих на Землю миров.

Источник: https://www.infoniac.ru/news/10-samyh-poslednih-kosmicheskih-otkrytii.html

10 заблуждений о космосе, в которые стыдно верить

что происходит в космосе на данный момент

Во многих фильмах можно увидеть такую картину: человек оказывается в открытом космосе без скафандра (либо с повреждённым скафандром) и быстро замерзает, превращаясь в хрупкую ледяную статую, трескающуюся от любого воздействия.

Что на самом деле. У космоса нет температуры. Он не холодный и не горячий — никакой : в вакууме нет конвекции и теплопроводности. Вообще, вакуум — хороший термоизолятор. Так что у астронавтов больше проблем с перегревом , чем с переохлаждением.

И если вы окажетесь в космосе без скафандра в тени планеты, то, скорее всего, испытаете лёгкую прохладу из‑за испарения воды с поверхности кожи. Но до твёрдого состояния точно не заморозитесь.

2. Люди могут лопнуть в космосе

Кадр из фильма «Вспомнить всё», 1990 год.

Бытует мнение, что в вакууме или в атмосфере с низким давлением, например на Марсе, человек может взорваться, как воздушный шарик. Глаза вылезут из орбит, сосуды полопаются, и незадачливый астронавт превратится в кровавое месиво.

Что на самом деле. Давление в вакууме отсутствует, и это может привести к тому, что ваши лёгкие лопнут , если вы не выдохнете, прежде чем выпрыгнуть из корабля. В крови начнут появляться газовые пузырьки (это называется эбуллизм ), на теле образуются отёки. Но кожа человека слишком упругая, и она не позволит вам взорваться.

Эксперименты на собаках показали, что в вакууме можно без последствий находиться до полутора минут, и после этого организм быстро восстановится. А вот более длительное пребывание летально из‑за гипоксии, то есть нехватки кислорода.

3. У Луны есть тёмная сторона

Тёмная сторона луны не такая уж тёмная. Снимок с зонда Lunar Reconnaissance Orbiter NASA, moon.nasa.gov

Когда люди говорят «тёмная сторона Луны», то представляют себе мрачное место, куда никогда не падает солнечный свет. Наверное, именно поэтому там строят свои базы нацисты и десептиконы.

Что на самом деле. Все стороны Луны освещаются Солнцем, и на ней есть день и ночь — правда, длятся они по две недели. Тем не менее у спутника Земли есть обратная сторона. Но из‑за того, что период вращения вокруг нашей планеты и вокруг собственной оси у Луны схожи, с Земли видно только одно её полушарие. А первые снимки другого были сделаны советской АМС «Луна‑3» ещё в 1959 году. И ничего особо таинственного там нет.

4. Чёрные дыры выглядят как воронки

Чёрная дыра в представлении художника, news.sky.com

Из‑за фильмов и картинок в интернете многие люди полагают, что чёрные дыры выглядят как вихрь, засасывающий всё вокруг себя. Или как воронка в раковине, куда стекает вода.

Что на самом деле. Впервые чёрную дыру показали реалистично в фильме «Интерстеллар», основываясь на теоретических моделях физика Кипа Торна. Уже позже NASA сделало первый её снимок с помощью системы из восьми радиотелескопов Event Horizon Telescope. В реальности чёрная дыра выглядит не как воронка, а как тёмная сфера, окружённая аккреционным диском из падающего на неё газа.

5. Солнце жёлтое

Снимок Солнца, сделанный астронавтом NASA Терри Вёртсом с борта МКС в 2015 году, space.com

Если вы попросите кого‑нибудь нарисовать наше светило, то начинающий художник непременно возьмёт жёлтый карандаш. Взгляните на Солнце, и убедитесь, что оно имеет такой оттенок.

Что на самом деле. Желтоватым Солнце делает наша атмосфера. И если взглянуть на снимки из космоса, становится понятно, что его цвет — белый . Но мы так привыкли считать Солнце жёлтым, что даже учёные классифицируют похожие на него звёзды как «жёлтые карлики» просто для удобства.

6. Первой в космос полетела собака Лайка

Героическая дворняга‑космонавт, infuture.ru

Кто первым полетел в космос? Конечно, Юрий Гагарин. А из братьев наших меньших? Собака по имени Лайка, это всем известно. Она была обычной дворнягой из приюта, отправившейся первой покорять космос.

Что на самом деле. Лайка действительно первой оказалась на орбите Земли. Но в космосе бывали живые существа и до неё. В феврале 1947 года американцы с помощью трофейной немецкой ракеты «Фау‑2» отправили в суборбитальный полёт несколько плодовых мушек (дрозофил), чтобы изучить на них воздействие космической радиации. Они долетели до высоты в 109 км, а границей космоса считается отметка в 80 км. Так что первыми его увидели мухи.

7. NASA потратило миллиарды на пишущую в космосе ручку

Та самая чудо‑ручка, spencerdub.me

Простыми ручками в космосе пользоваться нельзя, потому что чернила в стержне там не могут стекать вниз. И, согласно одной городской легенде , чтобы астронавты всё-таки смогли вести записи, NASA потратило 12 миллиардов долларов на изобретение специальной ручки. Она способна писать вверх ногами на любой поверхности при температуре от 0 до 300 °С. Советские же космонавты просто пользовались карандашами. Вот она, русская смекалка.

Что на самом деле. Поначалу и американцы, и русские пользовались в космосе карандашами, но это приводило к ряду проблем: частицы графита отслаивались и попадали в воздушные фильтры космических кораблей. А специальную ручку изобрёл Пол Фишер из Fisher Pen Company, и сделал он это независимо от NASA. Мужчина продал ведомству 400 штук по 2,95 доллара за каждую.

Наши космонавты тоже пользовались такими ручками. В своё время их закупали для работы на станции «Мир». Кстати, если хотите, можете тоже приобрести себе космическую ручку.

8. Через пояс астероидов трудно пролететь

Пояс астероидов в представлении художника, universetoday.com

Помните, как в «Звёздных войнах» Хан Соло мастерски пилотировал свой «Тысячелетний сокол», чтобы пробраться через пояс астероидов? Он умудрился обогнуть множество этих космических тел, да ещё и от погони имперских истребителей оторвался, хотя ежесекундно рисковал врезаться в парящие повсюду каменные глыбы.

Что на самом деле. В нашей Солнечной системе тоже есть свой пояс астероидов между орбитами Марса и Юпитера. Астрономы не уверены, сколько там каменных глыб, и называют приблизительное число в 10 миллионов. Но вы, даже не будучи крутым пилотом вроде Соло, легко пролетите сквозь них. Потому что среднее расстояние между астероидами в поясе — полтора миллиона километров. Это примерно в четыре раза больше, чем расстояние между Землёй и Луной.

Поэтому, чтобы в реальности врезаться в астероид, понадобится немалое старание и тщательные орбитальные манёвры. Вероятность не то что столкновения, но и просто незапланированного сближения космического корабля с каменной глыбой составляет менее чем один к миллиарду.

9. Космические корабли летают по прямой

Кадр из фильма «Прометей», 2012 год

В фильмах космические аппараты легко перемещаются из одного места в другое, просто развернувшись прямо к цели и включив двигатели. Точно так же, как автомобили или корабли на Земле. А если космолёту надо сесть на планету, он просто устремляется в её атмосферу на полной скорости.

Что на самом деле. В реальности космические аппараты двигаются от одной орбиты к другой по дугообразной гомановской траектории. И у них при этом отключены двигатели. Они включаются два раза, для разгона в начале и для торможения в конце, остальной путь корабль проделывает по инерции.

Если хотите самостоятельно поуправлять шаттлом и вживую увидеть движение по гомановской траектории, попробуйте поиграть в космический симулятор Kerbal Space Program. Он даёт наглядное представление об основах орбитальной механики.

Да, и ещё: корабли, собирающиеся приземлиться, сходят с орбиты, развернувшись двигателями по ходу движения, чтобы затормозить. В голливудских блокбастерах вроде «Прометея» такого не покажут, чтобы у зрителя не возникло вопроса, почему челноки летают задом наперёд.

10. Летом тепло, потому что Земля ближе к Солнцу

Солнце и Земля, sunearthday.nasa.gov

Смена времён года вызвана меняющимся расстоянием от Земли до Солнца. Логично, правда? К сожалению, иногда так думают не только маленькие дети, но и вполне взрослые люди.

Что на самом деле. Орбита Земли не совсем круглая — она эллиптическая. Наша планета достигает перигелия (точки на орбите, ближайшей к Солнцу) в январе и афелия (самой дальней точки от Солнца) примерно через шесть месяцев. Если бы от этого зависела погода, у нас было бы лето в январе и зима в июле.

Сезоны меняются из‑за наклона оси вращения Земли относительно её орбитальной плоскости (эклиптики). Движение по орбите действительно вызывает температурные колебания в пределах 5 °С, но этого недостаточно, чтобы устроить смену времён года.

Источник: https://Lifehacker.ru/zabluzhdeniya-o-kosmose/

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие российские космонавты находятся в космосе в 2020 годуи какую работу они выполняют на орбите? Кто полетит следующим экипажем,расписание долговременных космических экспедиций на МКС.

Работа по освоению космоса – одна из важнейших в России,большая часть научной деятельности и экспериментов, связанных с ней, являютсясильнейшим катализатором для остальных сфер развития.

 

Несмотря на определенные сложности с финансированием и даже авариями в последнее время, работа продолжается, и российские астронавты продолжают летать на орбиту, поддерживая мировое признание России, и внося свою лепту в мировое развитие.

Кто сейчас в космосе? 

25 сентября космический корабль «Союз-15» привез на МКС трех новых космонавтов — россиянина Олега Скрипочку, американку Джессику Меир и гражданина ОАЭ Хаззаа Аль-Мансури. 

Их радостно (но втайне с долей уныния в душе) встретили шестеро членов предыдущей экспедиции — Алексей Овчинин, Ник Хейг, Кристина Кук, Александр Скворцов (Россия), Лука Парминтано (Италия) и Эндрю Морган (США). Тогда на маленькой станции оставались целых 9 человек.

3 октября корабль МС-12 увез трех членов экипажа на Землю. МКС покинули Александр Овчинин, араб Хазаа аль-Мансури и американец Ник Хейг.МКС в последнее время используется по максимуму, поэтому проживание в тесных модулях большого количества людей является одним из экзаменов на выдержку. Неслучайно кто-то в предыдущие полеты намеренно сверлил отверстия в обшивке станции.Пять месяцев в тесноте пролетели быстро.

6 февраля МКС покинули Александр Скворцов, Кристина Кук и Лука Пармитано.  

Таким образом, сейчас на МКС осталось 3 человека:

Интересно, что из неопытных космонавтов в этот раз отправлен только американец Эндрю Морган — он в космос полетел первый раз. Россия уже предпочитает отправлять мужчин, которые имеют за плечами богатый космический опыт, новичков отправляют реже.

Итак, список экспедиции МКС-61 (3 человека):  

Командир:

  • Олег Скрипочка (25/26/47/48/60/61/62);

Бортинженеры:

  • Джессика Мейер (61/61/62);
  • Эндрю Морган (60/61/62).

Кто скоро прилетит на МКС: пока программа следующих полетов утверждается. 9 апреля к нынешним членам экипажа возможно присоединятся Кристофер Кэссиди, Андрей Бабкин, Николай Тихонов.

Фото и биографии россиян, которые побывали в космосе в последнее время

В настоящее время стать космонавтом проще, чем раньше, носчастливчиков все же очень мало. За год на орбите бывает не более 10-15 человек,из России – 5-6 человек. Однако, примечательно, что берут в настоящее времякосмос не только бывших летчиков, но и людей других специальностей. Итак, в последние годы в космосе следующие российские космонавты выполняли свою работу:

Олег Скрипочка — родился в 1969 году. Закончил МГТУ имени Баумана. Работал в НПО «Энергия» слесарем, в 1997 года зачислен в отряд космонавтов-испытателей. В космосе третий раз. 

Алексей Овчинин — весьма опытный космонавт, 1971 года рождения. Уже летал к МКС в 2016 году. Закончил Борисоглебское училище летчиков, Ейское высшее училище, дополнительное образование получил в Академии народного хозяйства. Занимался подготовкой пилотов на самолетах Як-52 и Л-39. 

Александр Скворцов — российский летчик, космонавт уже неоднократно бывавший в космосе. Герой РФ. Служил в истребительном полку ПВО, летчик 1 класса. Окончил Ставропольское училище летчиков и военную академию ПВО имени Жукова. 

Олег Кононенко — профессиональный космонавт, 1964 года рождения. Это уже его четвертый полет. Закончил Харьковский авиационный институт, является специалистом по двигателям. С 1996 года приступил к космической подготовке. 

 Сергей Прокопьев — 1975 года рождения. Выпускник Тамбовского и Оренбургского военных авиационных училищ, имеет также диплом бухгалтера Мичуринского аграрного университета. Бывший командир бомбардировщиков Ту-22 и Ту-160. В космосе первый раз.   

Олег Артемьев – опытный специалист, командир, 1970 года рождения, второй раз на орбите. Родился в Риге, сын военного инженера. С детства увлекался авиацией, занимался спортом и борьбой. Закончил университет им. Баумана, академию госслужбы. С 1998 года работал в РКК «Энергия», занимался подготовкой экипажей к полетам, а в 2003 году сам стал космонавтом. 

Антон Шкаплеров – участник трех космических экспедиций, 1972 года рождения. В 1994 году окончил Высшее Авиационное училище в Качинске, в 1998 – Военную академию им. Жуковского, в 2018 году – академию госслужбы. Работал летчиком-инструктором группы пилотажа «Воздушные гусары», с начала 2000-х переведен в космическое подразделение.

Что интересно – оба последних пилота заканчивали академиюГосударственной службы при президенте РФ по гуманитарной специальности вкачестве дополнительного образования. Это может быть, как негласным требованиемиметь третью нетехническую специальность, либо при данной академии онипроходили какую-то специальную подготовку, например, при участии спецслужб.  

Какую работу выполняют космонавты на орбите?  

В составе последней экспедиции 61/62 основной задачей перед космонавтами стоит инсталляция оборудования, поступившего с последней грузовой доставкой. МКС постоянно развивается и растет, поэтому в космосе в ближайшие месяцы будут производить большой «ремонт». 

Один из самых впечатляющих достижений в ходе последней экспедиции — печать на 3Д-принтере внутренних органов мыши.  

Российские и американские космонавты на Международнойстанции выполняют работы по стыковке новых модулей, берут пробы с внешнихпанелей корабля, проводят биологические и физические опыты. Программы каждогополета составляются задолго до существования старта, перед с космонавтамиставятся задачи по увеличению безопасности, также на высоте идёт проверка новыхтехнологий.  

В ходе экспедиции 60/61 в 2019-2020 году предусмотренследующий список экспериментов и научных направлений:

Наименование Количество процедур
Физические и химические взаимодействия, тестирование материалов и сред в условиях космоса. 6
Исследование планеты Земля и Галактики. 6
Работа в открытом космосе. 13
Биоинженерия, биотехнологии, растениеводство. 11
Освоение космоса и наблюдение. 17
Образовательная и исследовательская работа. 7

Всего предусмотрено более 300 опытов и исследований. Обычно сегменты деятельности по странам на МКС имеют своиакценты. Например, американцы и европейцы сосредоточены на биологических имедицинских опытах, российские занимаются энергетикой, японцы — робототехникой.Однако, россияне тоже занимаются изучением биологических и химических областей.

Также за последние годы был внесен немалый вклад в мировую науку поисследованию Солнечной системы, проведены опыты по биологической коррозии,особенностям последствий малых инерционных сил в условиях невесомости.

Американские астронавты, конечно, нередко добиваются больших результатов в видуувеличенных экипажей и большего бюджета. Однако, россияне выполняют сложнейшие работы в открытом космосе.  

Так что, на вопрос какие космонавты находятся в космосе в2020 году сейчас, можно ответить однозначно, что сейчас в космосе только 1 человек из россиян — это Олег Скрипочка, остальные — иностранцы.

Источник: https://novosti-online.info/2761-kakie-kosmonavty-nahodyatsya-v-kosmose.html

10 последних открытий в космосе

(согласно списку Терезы Корнелиус)

Чем сильнее развиваются современные технологии, тем больше открывается возможностей для того, чтобы больше узнать о нашей Вселенной. В последнее время стало возможным подтвердить такие факты о Вселенной, о которых раньше мы могли только догадываться. Вот список некоторых из недавних открытий в космосе. Наслаждайтесь!

10. Открыт новый спутник Плутона (P4)

 Теперь нам известно, что вокруг Плутона вращается четыре спутника.

Харон был открыт в 1978 году и является крупнейшим из спутников Плутона. Его диаметр, по современным оценкам, составляет 1205 км – чуть больше половины диаметра Плутона, а соотношение масс составляет 1:8. Для сравнения, соотношение масс Луны и Земли равняется 1:81.

Из-за такого малого соотношения масс Харон и Плутон часто рассматриваются в качестве двойной карликовой планеты. В 2005 году с помощью космического телескопа Хаббл обнаружили еще 2 спутника Плутона – Никту и Гидру. Предположительно диаметр Никты – 46 км, а Гидры – 61 км.

Открытие спутника Плутона произошло в 2011 году, когда Хаббл сфотографировал небесное тело, которое временно называется P4. Его размеры составляют от 13 до 34 км. Как удивительно, что Хаббл сфотографировал такое крошечное тело, находящееся на расстоянии более 3 миллиардов километров от нас!

 9. Гигантские космические магнитные пузыри

НАСА запустило в космос два зонда Voyager для изучения пограничной области гелиосферы, находящейся на расстоянии примерно 9 миллиардов километров от Земли.

Вопреки сформировавшимся за пятьдесят лет гипотезам, наблюдатели столкнулись на границе Солнечной системы не с линейным и постепенно убывающим магнитным полем, а с кипящей пеной из локально намагниченных областей протяженностью сотни миллионов километров каждый – подвижной ячеистой структурой, внутри которой линии магнитного поля постоянно разрываются, рекомбинируются и образуют новые области – магнитные «пузыри».

8. Не только у кометы есть хвост

Специалисты NASA, работающие с научным спутником GALEX, в 2007 году сообщили об удивительном открытии. Звезда, носящая имя «Удивительная» – Мира, полностью оправдала свое название.

Сделанные GALEX в ультрафиолетовом диапазоне снимки позволили установить, что звезда, находящаяся в созвездии Кита, не только летит сквозь пространство с огромной скоростью, но еще и оставляет за собой хвост, как у кометы, длиной 13 световых лет.

 До этого открытия считалось, что звезды не могут иметь хвосты.

7. На Луне найдена вода

9 октября 2009 LCROSS – космический аппарат НАСА для наблюдения и зондирования лунных кратеров, часть его упала в районе кратера Кабеус, который находится на темной стороне Луны, на южном ее полюсе. В результате падения выброшено облако из газа и пыли.

LCROSS пролетел сквозь выброшенное облако, анализируя вещество, поднятое со дна кратера. Оказалось, облако частиц содержало не меньше 100 килограммов воды. Особенно неожиданным для учёных стало наличие на Луне большого количества ртути и серебра.

 Позже данные с трех космических аппаратов показали, что тонкая пленка воды  в некоторых областях покрывает поверхность почвы Луны.

 6. Эрис

В январе 2005 года на самом краю Солнечной системы была обнаружена маленькая планета Эрис, что вызвало дискуссии среди ученых о том, каково же на самом деле определение планеты. Названа открытая планета Эрис – в честь богини раздора в греческой мифологии.

 Эрис изначально считалась 10-й планетой Солнечной системы, но позднее она и другие объекты, расположенные в поясе Койпера, объединили в новый класс: карликовые планеты.

 Эрис находится за пределами орбиты Плутона и примерно такого же размера (диаметр планеты 2 326 километров) как Плутон.

Поверхность Эрис имеет необычайную яркость, ученые считат, что она покрыта  ледовой поверхностью. Поверхностный слой льда должен постоянно обновляться. Если бы этого не происходило, то под воздействием солнечных лучей и ударов метеоритов, она бы давно потеряла свою яркость. По предположениям, Эрис имеет атмосферу, в которой повышенное содержание метана.

Именно он периодически замерзая и оттаивая производит обновление поверхностного слоя льда. Эрис имеет один известный спутник, названный Дисномия (в греческой мифологии Дисномия – дочь богини Эрис). Период обращения планеты вокруг Солнца составляет 560 лет. Температура на поверхности около минус 250 градусов.

 Эрис и Дисномия наиболее удаленные из известных природных объектов в Солнечной системе.

 5. Вода на Марсе

В 2011 году НАСА сделало заявление, приложив к нему фотографии, что на Марсе может быть «текущая вода». Была сделана покадровая съемка, чтобы показать, как жидкость бежала по склонам гор, расположенных в средних широтах южного полушария Красной планеты. Темные полосы увеличиваются в размерах в период весны и лета и вновь пропадают к зиме.

Наиболее обоснованно предположение ученых, что это потоки соленой воды, которая достаточно сильно нагревается, когда на планете летние месяцы. Льды расплавляются и заливают поверхность. Предполагаемые ручьи шириной от полуметра до пяти метров достигают в длину нескольких сотен метров.

 Признаки того, что на Марсе когда-то была проточная вода, были обнаружены и раньше, но это первый случай, когда такое событие наблюдалось в течение короткого периода времени.

 4. Энцелад и его вулканы

Энцелад – шестой по размерам спутник Сатурна. Был открыт в 1789 году. Благодаря наблюдениям с «Вояджеров» было установлено, что диаметр Энцелада составляет примерно 500 км и что поверхность Энцелада отражает почти весь падающий на неё солнечный свет.

В 2005 году межпланетный зонд «Кассини» несколько раз прошёл вблизи Энцелада. Удалось рассмотреть своеобразный богатый водой шлейф, испаряющийся с южного полюса.

Также оказалось, что Энцелад – один из трёх небесных тел во внешней Солнечной системе (наряду со спутником Юпитера Иои спутником Нептуна Тритоном), на котором наблюдались активные извержения.

В 2011 году учёные NASA на «Enceladus Focus Group Conference» заявили, что Энцелад «наиболее жилое место в Солнечной системе за пределами Земли за все время её существования»

 3. Темный поток

Темный поток открыт в 2008 году и таит в себе больше вопросов, чем ответов. Этот поток представляет собой скопление галактик, которые под воздействием неизвестной силы на огромной скорости, около 1 тыс. км в час, мчатся к границе видимой Вселенной. Эти скопления – часть потока, который растянулся приблизительно на 3 млрд. световых лет.

Движение темного потока не может быть объяснено ни одной из известных гравитационных сил в наблюдаемой Вселенной. Одно из возможных объяснений открытого явления предполагает, что причина потока – притяжение огромного скопления материи. Но Лаура Мерсини-Хоутон из Университета штата Северная Каролина (США) выдвигает еще более сенсационное объяснение.

 С ее точки зрения, «темный поток» – признак присутствия другой вселенной, соседствующей с нашей.

Пока эти объяснения и даже само существование «темного потока» единогласного признания не получили, и вокруг них идут горячие научные дискуссии.

 2. Планеты вне солнечной системы – экзопланеты

Первые экзопланеты, были обнаружены в 1992 году.  Это планеты, обращающиеся вокруг звезды за пределами Солнечнойсистемы. Экзопланеты чрезвычайно малы и тусклы по сравнению со звёздами. Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой. Сейчас такие планеты стали открывать благодаря усовершенствованным научным методам.

К 17 мая 2012 года подтверждено существование 770 экзопланет в 613 планетных системах. По проекту «Кеплер»на 21 декабря 2011 года числится ещё 2326 экзопланет. Общее количество экзопланет в галактике Млечный Путь по новым данным от 100 миллиардов, из которых приблизительно от 5 до 20 миллиардов возможно являются «землеподобными». Большинство известных экзопланет – газовые гиганты и более походят на Юпитер, чем на Землю.

1. Первая планета в обитаемой зоне

В декабре 2011 года, НАСА подтвердили обнаружение первой планеты, которая находятся в зоне жизни звезды почти идентичной Солнцу. Ученые назвали планету Кеплер-22b. Она расположена в «зоне Златовласки», в 600 световых лет от нас.

Планета имеет радиус примерно в 2,5 раза больше радиуса Земли, и вращается в комфортной обитаемой зоне.

Ученые не уверены в составе планеты: преобладают ли на ней скальные породы, жидкость или газ, но открытие оказалось огромным шагом в поиске «близнеца Земли».

Источник: https://evivid.ru/10_poslednih_otkrytiy_v_kosmose.html

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

Я как-то с детства привык отслеживать интересные события, которые происходят в космической отрасли, включая разного рода запуски космических аппаратов, находки астрономов и прочее.

Надо сказать, за последние несколько лет космос стал гораздо ближе к человеку, если так можно выразиться. Люди снова заинтересовались Вселенной, и тем, что там происходит. В общем, в этом небольшом обзоре предлагаю ознакомиться с самыми интересными «космическими» событиями года.

Ее основатель, голландец Бас Лансдорп собирает средства на отправку команды людей к Марсу. При этом у программы есть интересный нюанс: обратного билета просто нет, люди отправляются на Красную планету в один конец.

Требуются добровольцы, и, что интересно, они находятся в большом количестве. Тысячи человек подают заявки на участие в этом проекте. В начале года было отобрано более тысячи кандидатов, котоыре, если и полетят, то только через несколько лет.

Вот модель того, что может ожидать добровольцев на Марсе:

Заселение Марса будет проходить в несколько этапов: создание посадочного модуля, создание и транспортировка модулей для жизни колонистов, транспортировка колонистов, освоение Марса.

Самая большая цифрова камера запущена в космос

Знаковым событием является запуск космического телескопа GAIA. Цель этого телескопа, вернее, его команды — составление наиболее точной карты нашей галактики изнутри. Другими словами, телескоп будет составлять детальнейший снимок Млечного пути.

Пройдет еще 2 с половиной месяца, и телескоп войдет в полностью рабочий режим, о чем, я надеюсь, смогу здесь написать :)

В соседней галактике найдена сверхновая

Сверхновая звезда — это звезда, которая собирается взорваться, причем за короткое время такое светило увеличивает светимость до светимости небольшой галактики. Появление таких звезд — редкость, очень большая редкость. И необычайной удачей можно назвать то, что земные астрономы смогли найти сверхновую в соседней галактике.

Эта звезда находится на расстоянии 12 миллионов световых лет (соответственно, взорвалась она как раз 12 миллионов лет назад, а сейчас мы наблюдаем эту картину благодаря свету, дошедшему до нас).

Звезда эта за короткое время увеличила светимость в несколько порядков, со светимости 16 до светимости 6 (то есть, рассмотреть ее можно в обычный бинокль).

Opportunity на Марсе проработал 10 лет

Представьте себе, марсоход, срок службы которого был рассчитан на 3 месяца, проработал на Марсе уже более 10 лет. При этом он остается полностью функциональным, оборудование этого марсохода из строя не выходило.

Вполне может быть, что марсоход сможет проработать на Красной Планете еще несколько лет, прежде, чем что-то таки случится (хотелось бы надеяться, что ничего такого не произойдет, но все же марсоход — очень сложный механизм, что-то когда-то да сломается).Этот трудолюбивый аппарат сделал для науки уже столько, чего ни один аппарат, устройство, до настоящего момента не делал.

 За 10 лет марсоход проехал 38,7 километров, смог «увидеть» 3556 марсианских рассвета, сделать много тысяч фотографий, переданных на Землю, а также получил доказательства существования воды на поверхности Марса. В прошлом году, в начале лета, как раз и были получены доказательства существования на Марсе (в прошлом) пресной воды.

Шестигранный шторм на Сатурне

Большой вихрь на Юпитере — буря, равной которой нет на Земле. Это атмосферное явление существует уже несколько сотен лет, и астрономы наблюдают за его развитием. Но вот Сатурн до настоящего момента считался спокойной планетой, газовым гигантом.

А ведь именно там был обнаружен шестигранный шторм, размер которого составляет 30 тысяч километров в поперечнике. Атмосферные массы вращаются там со скоростью в 320 километров в час. Это — пока что максимум для Солнечной системы.

Шестигранный шторм даже получил собственное название — планетарный гексагон.

Rosetta — высадка на комету

Такое событие, как посещение космическим аппаратом какой-либо планеты/космического тела, является уникальным. И именно такое событие должно будет произойти в ноябре этого года.

Несколько лет назад в космос был выпущен космический аппарат «Розетта» — это межпланетная космическая станция с модулем высадки на борту.

В начале этого года «Розетта», так называется станция, «проснулась» спустя два года, и теперь она, и ее посадочный модуль готовы к работе. Правда, работать устройствам придется не сейчас, а ближе к осени, когда планируется высадка на комету Чурюмова-Герасименко.

Если высадка пройдет хорошо, гладко, ученые получат огромное количество данных о строении и происхождении комет.

Кстати, посмотреть на то, что собой представляет миссия «Розетта» можно вот по этой ссылке (это 3D модель всей миссии, причем модель интерактивная, все можно покликать, подвигать).

Составлена точная панорама Млечного Пути

Благодаря современному оборудованию и развитию разного рода технологий, ученые смогли составить панораму Млечного Пути, увидев даже те участки, которые скрыты за космической пылью.

Из-за большого количества космической пыли, обычно увидеть, что за этой пылью, невозможно, а благодаря инфракрасному телескопу это стало возможным. Оказалось, что наша Галактика «пронизана с пузырьками» – полостями излучающими радиацию и ветер.

Данные позволяют ученым построить более глобальную модель звезд и образование звезд в галактике, которое называют «импульсом» Млечного Пути.

Обнаружена крупнейшая звездаКрупнейшая из всех, найденных астрономами до сих пор. Эта звезда расположена в 16 тысячах световых лет от нас. Ее размер — в полторы тысячи раз (!) больше Солнца. Это красный сверхгигант, который, в конечном итоге, должен превратиться в сверхновую.

Кроме того, эта звезда окружена водородным облаком, которое светится.

Подледный океан  на Энцеладе

Энцелад — это спутник Сатурна, причем спутник маленький. Он вроде как не представлял интереса для ученых, но сейчас оказалось, что Энцелад — интереснейший объект. Дело в том, что астрономы «засекли» на Энцеладе выбросы жидкости и пара.

Считалось, что все это может быть влиянием Сатурна, который якобы нагревает поверхность своего спутника, путем гравитационных возмущений. Оказалось же, что эти выбросы — следствие существования океана, подледного огромного океана из воды, в котором, теоретически, может существовать жизнь.

Диаметр самого Энцелада составляет 500 километров, а океан (скорее, подледное озеро), залегает  на глубине 30-40 километров.

Источник: https://xage.ru/chto-sluchilos-v-kosmose-v-etom-godu-sobytija-na-zemle-i-v-kosmicheskom-prostranstve-/

15 фактов о космосе, которые шокируют вас

Космические исследования в реальной жизни так же размыты, как и в кино. Это область, в которой не всегда можно получить точные данные. О размерах и масштабах Вселенной не знают даже лучшие ученые. Однако с каждый днем происходит все большее ее освоение.

Что все же известно исследователям о космосе, чего, возможно, еще не знаете вы?

Запись космических звуков

НАСА использует технологию, называемую ультразвуковой обработкой данных, чтобы принимать сигналы радиоволн, магнитных полей, а также плазменных волн. И преобразует эти сигналы в звуковые дорожки, чтобы «слышать», что происходит в отдаленном космосе.

Довольно жуткие звуки варьируются от мрачных всплесков до сигналов, напоминающих приближающийся космический корабль.

Синие закаты Марса

Факт о подобном явлении стал известен в 2015 году, когда удалось получить первое цветное фото этой планеты.

Ученые поясняют визуальный эффект свечением мелких частиц в атмосфере Марса, которые позволяют цветовым голубым волнам проникать в атмосферу эффективнее, чем «более длинным», таким как красный, желтый и оранжевый.

Посылка в космос безумно дорогая

Разделив стоимость запуска на вес груза, можно получить ошеломляющие цифры. Так, один лимон, отправленный в космические просторы, будет стоит 2000 долларов.

Еще не так давно каждые 450 грамм груза стоили 10 000 долларов. Теперь же цены резко возросли: до 43 180 $ для космического корабля «Лебедь» и 27 000 $ для новых носителей SpaceX. Таким образом, для полета в космос бутылки воды нужно будет заплатить в пределах от 9100 до 43 180 долларов.

Космический мусор

Космическое пространство наполнено многочисленным мусором, таким как части разрушенных ракет или неработающие спутники. Эти объекты все еще продолжают вращаться вокруг Земли со скоростью в 10 раз большей, чем скорость выстрела.

За космическим мусором наблюдают, чтобы виновные в его распространении несли за это ответственность. Однако его количество уже превысило 23 000 объектов. Лидирующими в этом списке являются США, Россия и Китай. Под ответственностью каждой из трех стран немногим меньше 4000 объектов.

Мусор этот опасен возможным столкновением, способным вызвать огромное мусорное облако из-за цепной реакции. Что и показывает нам фильм «Гравитация».

Сохранение следов на Луне

Лунные породы разрушаются настолько медленно (на 10 мм в 1 млн лет), что следы космонавтов могут сохраняться на ее поверхности в течение 10-100 млн лет.

Именно столько могут просуществовать на нашем естественном спутнике следы астронавтов, прилетевших на Луну на «Аполлоне-11» в 1969 году.

Температура космического пространства

Здесь не всегда холодно. В самых отдаленных уголках температура может опускаться до -270 °C. Но если приблизиться к Земле, где Солнце окружает все своими лучами, то можно наблюдать повышение температуры до 120 °C.

Скафандры астронавтов белого цвета, чтобы они могли отражать тепло.

Год короче дня

Венера вращается довольно медленно, в противоположном от Земли направлении. Полное ее вращение проходит за 243 наших дня, что и является ее обычным днем.

Но она расположена близко к Солнцу, потому проходит вокруг него всего за 225 дней. Таким образом, получается, что год на Венере немного короче дня.

Мкс размером с футбольное поле

Международная космическая станция является самым большим объектом, отправленным людьми в космос. Длина ее — 108 метров, а вес — почти 420 000 кг.

Во время исследований здесь побывало 230 человек из 18 разных стран.

Без скафандра

Вопреки факту, показанному в фильме «Гравитация», без скафандра в космосе вы продержались бы не больше 15 секунд.

Ровно на столько хватит всего кислорода, что есть у вас крови. После этого воздух в легких будет расширяться из-за отсутствия давления в атмосфере, что разорвет ткани. Также в незащищенном организме произойдет закипание крови и отсутствие контроля кишечника.

Космические преступники

Существуют определенные законы, согласно которым нельзя выводить на орбиту оружие массового поражения, а все исследования должны проводиться лишь в мирных целях. Любая страна несет ответственность за запускаемый в космос объект и ущерб, который он может нанести.

Поэтому ООН следит за космическим пространством и находящимися в нем объектами с людьми. Какие-либо противоправные действия могут сделать астронавта космическим преступником.

Космическое пространство

Можно подумать, что кроме планет и звезд здесь ничего нет. Несмотря на то что это недалеко от истины, космическое пространство все же не совсем представляет собой вакуум.

В нем есть небольшая плотность частиц. Это облака космической плазмы, звездной пыли и космических лучей.

Чернота пространства

Казалось бы, такое огромное количество звезд должно было заполнить пространство светом, а оно черное. В 1823 году немецкий астроном решил, что яркость статичной Вселенной, равномерно заполненной звездами, должна быть равна яркости солнечного диска. Явление назвали «парадоксом Ольсберга».

Позже оказалось, что никакой равномерной наполненности звездами нет, потому как некоторые из них существовали не так долго, чтобы их свет еще мог достигать Земли сейчас, а Вселенная имеет способность расширяться. Отсюда и чернота пространства, которое не может быть равномерно освещено.

Неоспоримый лидер

Солнце составляет 99,8 % всей массы Солнечной системы. Все остальное, включая нашу Землю, в сравнении с ним — просто пылинки.

Неудивительно, что оно миллиардами лет удерживает около себя планеты.

Черные дыры

Согласно новому исследованию, Млечный Путь содержит десятки тысяч черных дыр. Эти объекты невозможно обнаружить в спокойном состоянии.

Однако когда они взаимодействуют со звездой, ученые могут находить их с помощью рентгеновских лучей.

Септиллион звезд

Примерно такое количество звезд насчитывает Вселенная. Кстати, это число содержит 24 нуля после единицы. За девять лет наблюдений ученые выявили 10 000 галактик в самых темных глубинах Вселенной.

Только наша галактика Млечного Пути содержит около 100 млрд звезд. Умножив это число на количество галактик, получили предполагаемую цифру.

Однако это еще не окончательное количество, ведь остается много неизведанного космического пространства. По мнению ученых, эта цифра будет расти в их подсчетах, когда технологии будут более усовершенствованы для открытия новых галактик.

Нашли нарушение? Пожаловаться на содержание

Источник: https://FB.ru/post/environment/2018/5/13/26598

Что происходит с человеком в космосе?

Человечество давно мечтает покорить Марс. В октябре 2016 года НАСА заявило своей приоритетной целью отправку людей на Красную Планету к 2030-м годам.

Физиология человека и невесомость

Для того, что бы успешно спланировать осуществить миссию на Марс, ученые должны понимать, как космос влияет на физиологию человека при длительных космических полетах.

Те данные, которые известны науке в настоящий момент, позволяют сделать выводы, что нахождение в космосе однозначно сказывается на человеческом организме. Как в физическом, так и интеллектуальном плане. К тому же риски, связанные с космическими полетами, существенно различаются в разных условиях. Они будут разными на орбитальной космической станцией и космическим кораблем, направляющимся на Марс.

Физические проблемы

У космонавтов будут опухшие лица (из-за того, что жидкости тела распространяются более равномерно). Они будут страдать от уменьшения плотности костной ткани и потери минеральных веществ. Сюда можно записать недостаток сна и солнечного света. И еще увеличение уровня железа и нарушенную координацию. 

Проект НАСА по изучению зрения и внутричерепного давления космонавтов показал, что многие из них испытывают ухудшение зрения после завершения полета. Это вызвано воздействием невесомости на мозг и спинномозговую жидкость. Эти расстройства могут длиться годами.

Исследования НАСА

Космонавты, которые проводили длительные периоды времени в космосе, имеют структурные изменения глаз. Еще у них обнаружены аномально высокие уровни цереброспинальных жидкостей в головном мозге. Было продемонстрировано, что космический полеты также влияют на хрупкие окончания зрительных нервов.

Существуют свидетельства того, что воздействие галактического космического излучения увеличивает риск развития сердечно-сосудистых заболеваний. Возрастает риск рака, расстройств центральной нервной системы и острого лучевого синдрома. И эти риски могут быть даже серьезнее, чем считалось раньше.

Одно из проведенных исследований показало, что космонавты, покорившие Луну, в четыре раза чаще умирают от сердечно-сосудистых заболеваний. Если сравнивать с теми, которые не вылетали за пределы защитной магнитосферы Земли.

Кроме того, ученые все чаще исследуют психологические проблемы, связанные с космическими полетами. Космонавты, которые отправятся в дальние космические путешествия — на Луну, Марс и за его пределы, скорее всего будут изолированы во враждебной и стрессовой обстановке вместе с другими людьми, не имея возможности вернуться на Землю или быстро спастись.

Жизнь на Марсе

Так что же происходит с нашим мозгом в космосе?

Один из экспериментов NASA по нейрокогнитивной эффективности сравнивал мозг космонавтов до и после пребывания на МКС в течение шести месяцев, используя сканирование FMRI. Ученые обнаружили снижение связанности моторных и вестибулярных областей мозга. Они необходимы для координации движения у космонавтов, осуществивших длительные космические полеты.

В условиях невесомости мозг продолжает посылать такие сигналы телу, как если бы оно находилось в нормальных условиях гравитации. И тогда тело начинает думать, что оно падает или находится в перевернутом положении. Через некоторое время мозг более или менее приспосабливается к новой среде. Но при возвращении на Землю изменение рефлексов может вызвать длительные проблемы.

Серия исследовательских программ НАСА

Американское космическое агентство проводит специальные исследования. Ученые пытаются выявить, охарактеризовать и предотвратить проблемы с поведенческим здоровьем, связанные с космическими полетами. В исследовании используются ситуации, сопоставимые с земными. Такие как помещение групп людей в полной изоляции от внешнего мира на длительные периоды времени. При этом исследуются сон и усталость, проблемы сплоченности групп и возможные неблагоприятные психиатрические условия.

В 2014 году исследование Джона Хопкинса обнаружило признаки когнитивных нарушений в результате условий, которым подвергаются космонавты. Особенно сильное влияние оказывает космическое излучение, постоянно воздействующее на людей в космосе.

В октябре 2016 года UC Irvine было проведено исследование. Оно показало, что воздействие галактических космических лучей может вызвать долгосрочные когнитивные проблемы для космонавтов. Включая хроническую деменцию. В нескольких тестах, в которых были использованы грызуны, обнаружилось, что животные страдают как от воспаления головного мозга, так и от уменьшения взаимосвязи между нейронами даже через шесть месяцев после первоначального воздействия.

Животные также плохо выполняли тесты памяти. Они демонстрировали повышенную тревогу и страх, с уменьшенной способностью компенсировать стрессовые и неприятные ассоциации.

Эти выводы, по понятным причинам, вызвали опасения по поводу запланированного полета на Марс. Ведь космонавты надолго окажутся вне магнитного поля Земли, защищающего их на борту МКС. Они могут столкнуться с повышенными уровнями стресса и тревоги, наряду с нарушенными возможностями принятия решений и утратой возможности работы в режиме многозадачности. А это потенциально важные свойства психики при работе в чрезвычайных ситуациях.

Эти проблемы представляют собой головную боль для НАСА. Космические корабли обеспечивают очень ограниченную защиту от космических лучей. Их можно остановить только серьезной массивной защитой.

Установка на всем космическом корабле защитного внешнего экрана будет финансово нецелесообразной. Идея защитить изолированную часть космического корабля, в которой космонавты проводили были основную часть времени, более жизнеспособна, и вполне могла бы решить часть проблемы.

Тем не менее космонавты по-прежнему будут уязвимы к событиям солнечных бурь и вспышек. Их нелегко предсказать.

Манипуляция мозгами космонавтов

Одна из трудностей в изучении влияния космоса на интеллект космонавтов, в частности космическое излучение, заключается в том, что многие факторы, влияющие на них, обусловлены стрессовой обстановкой космического корабля. Эти факторы включают многие проблемы. Это нарушенный сон, тяжелые умственные нагрузки, высокий уровень углекислого газа и микрогравитация. В среднем, космонавты спят менее 6 часов в сутки. И должны концентрироваться и тренироваться в течение нескольких часов в день.

Типичная экспедиция на Марс будет длиться около трех лет. Это означает, что космонавты будут находиться в ограниченном пространстве с группой людей в течение очень долгого времени. Без возможности вести в режиме реального времени общение с семьей и друзьями с Земли. В настоящее время несколько компаний по заказу НАСА разрабатывают как лекарственные препараты, так и разнообразные методики для преодоления таких проблем.

В ситуации, когда космонавты учатся решать свои межличностные конфликты только с помощью компьютерной терапии и психоактивных веществ, будет трудно предсказать, что может случиться, если эти способы будут неэффективны или вызовут зависимость. Смогут ли космонавты сотрудничать и эффективно работать в течение нескольких месяцев, если они будут зависеть от таких методов лечения?

В будущем

Космические путешествия захватывали воображение человечества на протяжении веков. И перед появившимися возможности и ресурсами для отправки людей в космос будет трудно устоять.

Эти попытки будут только ускорять исследования вопросов влияния космоса на неврологию и физиологию человека. И позволят находить способы, которыми наши мозги и тела будут приспосабливаться к отдаленным и отличным от Земли средам. Тем, где происходила вся наша эволюционная история.

Они, возможно, так же приведут к рассмотрению более дорогостоящих технических решений. Таких как использование искусственной гравитации для путешествий по маршруту Земля-Марс и Марс-Земля. Или более быстрый перелет (хотя и дорогостоящий с точки зрения энергетики, но позволяющий достичь Марса меньше чем за три месяца). Или может строительство удобных больших подземных жилых объектов на Марсе.

Источник: https://alivespace.ru/chto-proishodit-s-chelovekom-v-kosmose/

Факты про освоение космоса, о которых не все знают

10 любопытнейших фактов об освоении космоса.

Секретные слова

Во время первых полетов космонавты общались с Землей с помощью секретных слов, чтобы никто не мог догадаться, как все проходит. Такими словами служили названия цветов, фруктов и деревьев.

Например, космонавт Владимир Комаров в случае повышения радиации должен был сигналить: «Банан!».Для Валентины Терешковой (первой женщины-космонавта) пароль «Дуб» означал, что тормозной двигатель работает хорошо, а «Вяз» — что двигатель не работает.

Выход в открытый космос

Следующей задачей после полета Гагарина стал выход в открытый космос. Первым это сделал Алексей Леонов во время полета на космическом корабле «Восход-2».

Тогда никто не знал, как правильно вести себя в невесомости.

Выйдя в космос, Леонов оттолкнулся от шлюза, и его сильно закрутило, но страховочный трос удержал астронавта. Его ждала еще одна проблема: скафандр неожиданно сильно раздулся, и Леонов не мог вернуться на корабль.

Он просто не помещался в люк, пока не снизил давление воздуха в скафандре.

Из-за этого выход в космос длился не 12 минут, как планировалось, а в два раза дольше.

Сила притяжения и космические скорости

Космодромы строят как можно ближе к экватору, чтобы ракета при взлете могла использовать силу вращения Земли.

Это важно, потому что улететь в космос очень сложно. Массивные космические тела, такие, как планеты, с огромной силой удерживают все окружающее.

Чтобы улететь от Земли на расстояние, с которого она не сможет притянуть вас обратно, нужно набрать вторую космическую скорость.

При первой космической скорости невозможно улететь от Земли, но можно выйти на околоземную орбиту и вращаться вокруг нашей планеты, не падая и не улетая. Именно так делают все искусственные спутники Земли, в том числе МКС.

МКС

Международную космическую станцию (МКС) начали строить в 1998 году, а первые космонавты поселились на ней 31 октября 2000 года.

МКС собирали 10 лет как огромный, сложный и очень дорогой конструктор. Ее длина — 110 метров. Одновременно на МКС живут и работают шесть человек. МКС в полном смысле этого слова — международная станция, в этом проекте принимают участие 23 страны. За сутки

МКС облетает вокруг Земли 16 раз, поэтому космонавты видят 16 восходов и закатов.

Астронавты-рекордсмены

Обеспечить существование космонавта на орбитальной станции очень сложно. На первых станциях экипажи находились не больше месяца, а на МКС живут теперь полгода.

Самый длительный в мире полет совершил Валерий Поляков — 438 суток (14 месяцев) подряд на станции «Мир».А мировой рекорд пребывания в космосе принадлежит Геннадию Падалке — за пять полетов он провел на орбите 878 суток (2 года и 5 месяцев).

Невесомость

В невесомости многое меняется. Например, увеличивается расстояние между позвонками и люди вырастают. Был случай, когда человек стал выше на 10,5 см!

А еще в невесомости очень легко передвигаться — космонавты просто летают внутри космической станции. Поэтому мышцы теряют силу, а кости становятся хрупкими. Больше всего страдают мышцы ног. Чтобы не разучиться ходить, космонавты принимают витамины и каждый день занимаются физкультурой. Они тренируются на беговой дорожке, к которой притянуты жгутами, чтобы не улететь.

Снимки из космоса

Космические аппараты летают высоко над Землей, но с них хорошо видно все, что происходит на планете, — как будто перед вами живая карта.

Множество спутников постоянно фотографируют Землю и тем самым помогают составлять карты, прогнозировать погоду, предупреждать о бурях и извержениях вулканов, наблюдать миграции животных и рыб, отслеживать загрязнения природы.

Фотографии из космоса используются также для сельскохозяйственных, экологических и многих других задач.

Приземление

Многие космонавты говорят, что спуск оставляет самые яркие впечатления от всего космического полета. Через иллюминатор они видят пламя, которое охватывает корабль во время прохождения плотных слоев атмосферы.

На Землю корабль опускается на большом парашюте, но он раскрывается не сразу, чтобы не было слишком сильного рывка.

Вначале раскрывается совсем маленький парашют, он вытягивает за собой второй — побольше, и только потом раскрывается главный большой парашют. Весь спуск на парашюте занимает 15 минут.

Восстановление

Сразу после возвращения астронавта на Землю начинается курс восстановления. На это уходит столько же времени, сколько человек провел на орбите, а иногда и больше.

Нужно заново учиться держать равновесие, тренировать мышцы и укреплять сердце.

Послание для инопланетян

В 1977 году были запущены американские космические аппараты «Вояджер I» и «Вояджер II». Тридцать лет они летели по Солнечной системе, изучая планеты, а в 2007 году покинули ее пределы и продолжают лететь дальше.

К каждому «Вояджеру» прикрепили алюминиевую коробку с посланием для инопланетян в виде позолоченного диска.

На диске записана информация о нас и нашей планете: музыка, приветствия на разных языках, фотографии с видами Земли, научные данные о человеке.

Источник: https://weekend.rambler.ru/read/42979356-fakty-pro-osvoenie-kosmosa-o-kotoryh-ne-vse-znayut/

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Тринадцать лет подряд Россия лидировала по количеству космических запусков. Но в 2016 году нас обогнали США и — впервые — Китай. В 2017 году одна частная компания SpaceX имеет шансы обогнать Россию по количеству запусков. Наше лидерство по этому параметру было предметом гордости, и его потеря стала поводом для расстройства. Насколько оно обосновано?

Количество пусков по странам с 2004 года

Большое количество российских запусков в последние годы имеет сразу несколько причин. Во-первых, развертывались прикладные спутниковые группировки — ГЛОНАСС для навигации, «Экспресс», «Ямал» для связи, «Ресурс» для дистанционного зондирования Земли, военные спутники. Во-вторых, активно запускались иностранные космические аппараты по коммерческим контрактам.

Когда в 90-х годах российские ракеты-носители вышли на мировой рынок, они оказались дешевыми и были очень востребованы.

Специально созданная компания ILS предлагала выгодные цены на «Протоны», и с 1996 года было произведено уже 98 пусков на самую коммерчески востребованную геостационарную орбиту. В-третьих, по пилотируемой программе каждый год стартует 4 «Союза» с космонавтами и 4–5 грузовых «Прогрессов», это уже как минимум 8 пусков в год.

Сейчас ГЛОНАСС развернута и требует меньшего количества запусков для поддержания группировки. С коммерческими контрактами ситуация ухудшилась: на рынок пусковых услуг пришла частная компания SpaceX, составив конкуренцию ценам ILS.

В 2016 году авария «Протона» не привела к потере полезной нагрузки, спутник был успешно выведен на целевую орбиту, но расследование происшествия наложилось на обнаружение неправильного припоя в двигателях, и в результате «Протон» не летал почти год.

Даже в пилотируемой программе убрали один грузовой «Прогресс», из-за чего пришлось сократить российский экипаж МКС с 3 человек до 2.

Парадоксально, но сокращение пусков является следствием и одной хорошей причины. В 80-е годы СССР производил в районе сотни пусков в год, но его связные спутники «Стрела» могли работать на орбите только полгода, а разведывательные «Зениты» — всего две недели.

Когда срок активного существования спутников настолько мал, он сводит на нет эффект от большого количества запусков. Сейчас наши спутники стали работать на орбите гораздо дольше, поэтому и запускать новые на замену нужно реже.

Также параллельно идет процесс замены ракет-носителей. Старые «Космос» и «Циклон» уже не летают, конверсионные «Днепры» тоже постепенно заканчивают свою карьеру. И если новый легкий «Союз-2.1в», впервые полетевший в конце 2013 года, в июне 2017 стартовал уже в третий раз, то у «Ангары» дела идут менее успешно.

После двух испытательных пусков в 2014 году она до сих пор не начала летать с настоящими спутниками. Дело не только в устранении неизбежных замечаний после первых — пусть и успешных — пусков. Центр имени Хруничева, на котором производится «Ангара», переносит производство ракет в Омск и сокращает площади в Москве на 80 %.

На фоне этих пертурбаций задержка с серийным производством, увы, закономерна.

Аварийность

Распространено мнение, что наши ракеты постоянно падают. Но статистика это не подтверждает. Если посмотреть относительную аварийность (количество аварий, разделенное на количество ракет), то видно, что показатели российской космонавтики находятся на сравнимом с другими странами уровне.

Относительная аварийность ведущих космических держав с 2004 года, потеря полезной нагрузки 1 балл, авария без потери полезной нагрузки — 0,5 балла

Кроме Европейского космического агентства, отличающегося почти нулевой аварийностью (причем единственное происшествие в 2014 году связано с нештатной работой российского блока «Фрегат» — спутники были выведены на нерасчетную орбиту, но успешно эксплуатируются), Россия, США и Китай показывают примерно одинаковую аварийность.

Почему же миф о постоянно падающих наших ракетах так живуч?

Во-первых, работа СМИ построена так, что успешный запуск проходит с минимальным освещением, а вот авария обращает на себя гораздо больше внимания.

Во-вторых, космонавтика воспринимается как составная часть престижа страны, поэтому есть силы, которые всячески подхватывают новости об авариях, чтобы использовать их для доказательства того, что «в стране все плохо». Существует целый список мемов, который регулярно достается по любому поводу и лично у меня уже в зубах навяз.

В-третьих, сама психология человека тяготеет к черно-белому мышлению, а для рационального анализа требуются интеллектуальные усилия. Ну и в-четвертых, несмотря на действительно хорошие усилия Роскосмоса по пиару, многое можно было бы сделать лучше.

Пиар

Можно услышать мнение, что дела у Роскосмоса идут хорошо, но он не умеет пиариться. Это не совсем верно — пиар-активность Роскосмоса довольно заметна. У агентства есть активно ведущиеся страницы в социальных сетях. Космонавты участвуют в эфирах, ведут свои страницы, и, например, в Instagram фотографии с орбиты весьма популярны. В 2016 году большие усилия были затрачены на слоган «Подними голову!».

Много хороших слов можно сказать о ТВ Роскосмоса. Они выпускают на  две еженедельные передачи (до недавнего времени одна выходила на «России 24»), делают хорошие фильмы. Благодаря им мы можем подробно узнать о том, как тренируются космонавты.

Также они создали хорошую видеоэнциклопедию «Космонавты» и сумели выпустить очень симпатичные ролики по астрономии «а что, если бы».

В то же время возникает ощущение, что работе не хватает ресурсов и системности. Например, старт пилотируемого корабля — важное и волнующее событие. Но нет его равномерного и заметного освещения. Иногда выделяется больше ресурсов, пуск комментируют и пытаются обратить на него больше общественного внимания. Но временами, наоборот, качество работы проседает.

Когда 28 июля стартовал пилотируемый «Союз», Северо-Западная Федерация космонавтики (энтузиасты-популяризаторы, не входящие в структуру Роскосмоса) организовала показ пуска на фестивале «Старкон». Но конкретно в этот раз качество трансляции было одним из худших за несколько последних лет, и это смазало старания людей.

Увы, но за равномерно качественным освещением пуска приходится идти на NASA TV.

К сожалению, не заметно, чтобы на пиар выделялись серьезные ресурсы. Доходит до смешного — больше пятидесяти лет ракеты семейства «Р-7» летали без бортовых камер. Европейское космическое агентство в 2014 году на свои деньги купило пару комплектов камер, поставило их на приобретенные российские ракеты и получило шикарную картинку разделения боковых блоков первой ступени.

Роскосмос один раз поставил камеры на ракету, стартовавшую с космодрома «Восточный» в 2016 году, и все. И это при том, что кадры с ракеты в реальном времени показывают не только блестяще владеющая пиаром SpaceX, но даже Китайское космическое агентство.

Ну и, наконец, в чем-то с пиаром Роскосмосу банально не повезло. Самый зоркий телескоп, «Спектр-Р», который видит в тысячу раз лучше «Хаббла», работает в радиодиапазоне, и его результаты выглядят абсолютно не зрелищно при всей научной уникальности.

Изображение галактики OJ287

Хорошо и плохо

Космическая отрасль любой страны имеет свои сильные и слабые стороны — кто-то достиг многого в одном, у кого-то преимущества в другом, и у всех свои проблемы.

Сильные стороны:

  1. Российская космонавтика имеет развитую прикладную составляющую. Одна из двух глобальных навигационных систем, геостационарные и низкоорбитальные системы связи, метеорологические спутники и спутники дистанционного зондирования Земли, группировки военных спутников — все это у нас есть. По количеству работающих спутников Россия занимает третье место после США и Китая.
  2. Однозначно сильной стороной является пилотируемая космонавтика. Корабль «Союз» — надежный и эффективный, и даже после начала полетов американских пилотируемых кораблей будет неплохо смотреться на их фоне. Он может быть не особо комфортным, но без проблем проработает до появления нового корабля «Федерация». Огромное количество знаний и технологий наработано по орбитальным станциям и долговременному пребыванию человека в космосе.
  3. Сохраняется первенство в отдельных направлениях. Например, у нас лучшие кислородно-керосиновые двигатели для ракет и отличные электрореактивные (ионные, плазменные) двигатели для спутников. Ракеты-носители «Протон» и «Союз» имеют огромную наработанную статистику эксплуатации, при этом постоянно модернизируются.
  4. Разрабатываются потенциально прорывные технологии — ядерный буксир, детонационные двигатели, гиперзвуковые технологии (пока что для военного применения, в будущем могут использоваться для космоса), метановые двигатели.

Слабые стороны:

  1. Нет собственных научных аппаратов за пределами земной орбиты. Да, они не могут пока принести прямую прибыль, но это интересные научные данные и много пиара. Частично эта проблема компенсируется участием в совместных проектах, когда наши приборы стоят на аппаратах других космических агентств — детекторы нейтронов на орбитах Луны и Марса, а также на «Кьюриосити» — наши. Проект «Экзомарс» является совместным с Европейским космическим агентством.
  2. Есть провалы в некоторых технологических направлениях. Несмотря на то что мы умеем производить кислородно-водородные двигатели, они до сих пор не переходят из лабораторий на серийные ракеты. А эти двигатели очень выгодны на верхних ступенях. Есть проблемы с элементной базой для космических аппаратов.
  3. Из лидера по выгодности коммерческих запусков наша космонавтика перешла в состав соревнующихся. Сейчас разрабатывается модификация «Протона» — «Протон Средний», который должен будет повысить конкурентоспособность на рынке пусковых услуг. Теоретически экономически эффективной должна была стать «Ангара», но без регулярных пусков нельзя сказать, оправдаются ли эти расчеты.
  4. Нет четкого видения плана развития космонавтики на несколько лет вперед. Внезапные новости о том, что, например, на «Восточном» не будет пилотируемой «Ангары», а космонавтов будет возить с Байконура еще не спроектированная до конца ракета «Союз-5» (она же «Феникс»/«Сункар») заставляют ожидать новых внезапных изменений.

Космонавтика России, увы, не находится «впереди планеты всей» — есть области, где нас обгоняют. В то же время и хоронить ее категорически не верно — работа идет активно и достаточно неплохо. В ближайшие годы Россия даже при инерционном движении останется в списке ведущих космических государств (США, Россия, Китай) и агентств (Европейское космическое агентство, 22 страны).

Источник: https://knife.media/russia-in-space/

Разница во времени на Земле и в космосе

В 20 в. было доказано, почему отличается время в космосе и на Земле. Разница создается благодаря действию гравитационного поля.

До научных открытий, совершенных ученым Альбертом Эйнштейном, время считалось неизменной величиной. Люди думали, что оно всегда и везде протекает одинаково.

Все изменила Общая теория относительности — согласно данному научному труду, пространство и время связаны друг с другом, а минуты и секунды отсчитываются неодинаково для тел движущихся и находящихся в состоянии покоя.

Учёные США провели исследования изменения пространства. Эксперимент заключался в запуске спутника, который благодаря наличию специального оборудования измерял и высчитывал влияние нашей планеты на пространство, которое ее окружает. Действительно, Земля как бы деформирует пространство, находящееся рядом с ней. Credit: rutvet.ru.

Важность теории Эйнштейна

Вначале Эйнштейн назвал свою работу «К электродинамике движущихся тел». Теорией относительности она стала позже — когда научный мир, ознакомившийся с ней, сделал выводы, касающиеся «относительного» положения тел в пространстве.

Так, человек, находящийся на борту судна, к примеру на его палубе, бросающий камень по направлению к носовой части, не заметит разницы для себя, если корабль плывет или остается неподвижным. Объясняется феномен тем, что по отношению к кораблю местоположение человека всегда остается неизменным.

За десятилетний период с 1905 по 1915 год Эйнштейн разработал Общую теорию относительности, которая является одной из самых важных теорий в современной физике. Credit: shorts.ru.

Основные выводы

Существует 2 основополагающих принципа, вытекающих из Общей теории относительности:

  1. Гравитационные поля создают пространственно-временное искривление.
  2. Для каждого объекта, находящегося в движении, время идет медленнее, чем для того, который остается в покое.

Благодаря релятивистскому замедлению времени для движущихся с ненулевой скоростью объектов любые физические процессы в нем происходят не так быстро, как в статическом положении.

Одним из принципов Теории относительности является пространственно-временное искривление. На схеме видно, как Солнце и другие планеты своей массой, как бы продавливают пространство вокруг себя, изменяя его. Credit: spacetime.ws.

Практический пример

Существует доказательство того, что для человека, летящего самолетом, время течет медленнее, чем для людей, которые находятся на Земле в состоянии покоя. Но этой разницы никто не почувствует, ведь она составит не более миллиардной доли секунды.

Ситуация меняется, когда скорость движущегося объекта многократно увеличивается.

Так, ракета, летящая со скоростью света, способна за 1 год преодолеть расстояние, составляющее 100 и более лет по земным меркам. Для самого космонавта, находящегося внутри такой ракеты, минутные стрелки двигались бы так же, как и всегда, — замедление заметили бы только земляне, каким-либо образом увидевшие часы, установленные в кабине корабля.

С другой стороны, космонавт, в этот момент посмотревший из иллюминатора на Землю и увидевший на ее поверхности часы, обратил бы внимание на их замедленный ход.

Несмотря на это, в действительности замедление возникает только у космонавта. Это связано с большой скоростью летящей ракеты и тем, что точки отсчета для корабля и планеты остаются неравноправными, ведь Земля постепенно передвигается по прямой траектории, а летательный аппарат перемещается с ускорением.

Искривление пространства и времени как причина относительности

Любой физический предмет, обладающий ненулевым весом, изменяет вокруг себя пространственно-временные показатели.

Рядом с таким небольшим объектом, как яблоко, искривление минимально, а явные изменения происходят только в пространстве, окружающем массивные тела.

На фотографии — изображение одного квазара. Его свет, искривляется пространством вблизи массивной черной дыры (посередине) и доходит до нас в виде четырех отдельных пятен. Время рядом с черной дырой будет сильно замедлено. Credit: телескоп «Хаббл», NASA.

Земля своей массой создает гравитационное поле такой силы, что для объектов, находящихся на земной орбите, время проходит медленнее, чем на поверхности планеты.

Наличие временного несоответствия было выявлено при отправке сообщений со спутников на Землю.

Ощутимое пространственно-временное искривление возникает вблизи любых массивных тел — планет, звезд. Это было доказано опытным путем.

Свет квазара, расположенного неподалеку от мощной черной дыры, искривляется, время в той области также замедляется.

Это видно по тем пятнам, которые проявляются для земного наблюдателя через неравные временные периоды.

Уничтожение стереотипов

Из всего вышесказанного можно сделать вывод: время в космосе протекает по-разному.

Рядом с крупными объектами оно идет медленнее, а вдали от них, в пространстве без звезд и черных дыр, — быстрее.

Все это в корне рушит стереотип, согласно которому время представляется константой, некой постоянной величиной.

Когда скорость объекта приближается к скорости света, внутреннее время объекта, согласно расчётам, замедляется. Credit: spacetime.ws./v-kosmose.com.

Интересные факты

Согласно теории относительности, любой предмет, на который действует гравитация, падает прямолинейно и равномерно.

Мяч, по которому ударили, движется не по дугообразной, а по прямой траектории. Он летит вверх и падает обратно на Землю из-за пространственно-временного искривления, поскольку траектории подброшенного предмета и планеты в установленный момент сходятся в 1 точке.

10 самых последних космических открытий

что происходит в космосе на данный момент
Наука

Чем совершеннее становятся технологии, тем больше возможностей открывается перед учеными и тем больше мы можем узнать о нашей Вселенной. С каждым годом космос открывает перед нами все больше своих тайн, в ближайшее время мы наверняка узнаем то, о чем раньше не могли даже догадываться. Узнайте о том, какие открытия в области космоса были сделаны в последние годы.

1) Еще один спутник Плутона

На сегодняшний день известно уже 4 спутника Плутона. Харон был открыт в 1978 году, и он является самым крупным его спутником. Диаметр этого спутника 1205 километров, что заставляет многих ученых полагать, что Плутон на самом деле является «двойной карликовой планетой».

Ничего нового не было слышно о ледяных телах, которые вращаются вокруг Плутона, до 2005 года, пока космический телескоп «Хаббл» не обнаружил еще 2 спутника – Никту и Гидру. Диаметр этих космических тел от 50 до 110 километров. Но самое удивительное открытие ждало ученых в 2011 году, когда «Хабблу» удалось запечатлеть еще один спутник Плутона, который временно называется P4. Его диаметр составляет всего от 13 до 34 километров.

Примечательным в данном случае является то, что «Хаббл» сфотографировал такой крошечный космический объект, который расположен на расстоянии около 5 миллиардов километров от нас.

2) Гигантские космические магнитные пузыри

Два космических аппарата НАСА «Войяжер» обнаружили магнитные пузыри в районе Солнечной системы, известной как Гелиосфера, которая расположена в 15 миллиардах километров от Земли.

В 1950-х годах ученые считали, что этот район космического пространства относительно ровный, но когда «Войяжер 1» достиг Гелиосферы в 2005, а «Войяжер 2» в 2008 году, они засекли турбулентность, которую образует магнитное поле Солнца, и там формируются магнитные пузыри, диаметром около 160 миллионов километров.

3) Хвост звезды Мира А

В 2007 году орбитальный космический телескоп GALEX сканировал Миру А, старую звезду — красного карлика, что являлось частью предстоящего проекта по сканированию всего неба в ультрафиолетовом свете.

Астрономы были шокированы, когда обнаружили что у Миры А имеется длинный хвост, тянущийся за ней, как за кометой, который имеет протяженность около 13 световых лет. Эта звезда двигается по Вселенной с необычайно большой скоростью, примерно 470 тысяч километров в час.

До этого считалось, что у звезд не бывает хвостов.

4) Вода на Луне

9 октября 2009 года Космический аппарат для наблюдения и зондирования лунных кратеров НАСА LCROSS обнаружил воду в холодном и постоянно находящимся в тени кратере на южном полюсе Луны.

LCROSS является зондом НАСА, который был создан для столкновения с лунной поверхностью, а маленький спутник, следующий за ним, должен был измерить химический состав материала, который поднялся вверх при столкновении.

После целого года анализа данных НАСА сообщило о том, что на нашем спутнике имеется вода в виде льда, которая находится на дне этого вечно темного кратера. Позже другие данные показали, что тонкий слой воды покрывает лунный грунт, по крайней мере, в некоторых областях Луны.

5) Карликовая планета Эрида

В январе 2005 года была открыта новая планета Солнечной системы Эрида, которая вызвала в астрономическом мире массу споров о том, что следует считать планетой вообще.

Эриду первоначально посчитали 10-й планетой Солнечной системы, но затем все объекты пояса Койпера и пояса астероидов приравняли к новому классу – карликовые планеты. Эрида находится за орбитой Плутона и имеет примерно такой же размер, хотя первоначально считалось, что она больше Плутона.

Известно, что у Эриды имеется один спутник, который назвали Дисномия. Пока Эрида и Дисномия считаются самыми дальними объектами Солнечной системы.

6) Следы водных потоков на Марсе

В 2011 году НАСА, предоставив фотографии Красной планеты, сделало заявление о том, что оно имеет свидетельства того, что на Марсе могла в прошлом течь вода, которая оставила следы. Действительно, на снимках видны длинные полосы, похожие на те, что оставляют в породах текущие потоки.

Ученые полагают, что эти потоки — соленая вода, которая разогревается во время летних месяцев и начинает стекать по поверхности. Признаки того, что на Марсе когда-то была жидкая вода, были обнаружены и раньше, однако впервые ученые заметили, что эти следы меняются в течение короткого периода времени.

7) Спутник Сатурна Энцелад и его гейзеры

В июле 2004 года космический аппарат «Кассини» вышел на орбиту вокруг Сатурна. После того, как миссии «Войяжер» приблизились к этому спутнику, исследователи решили запустить в данный район другой аппарат для более подробного исследования Энцелада.

После того как «Кассини» несколько раз пролетел мимо спутника в 2005 году, ученым удалось сделать ряд открытий, в частности, что в атмосфере Энцелада имеется водяной пар и сложные углеводородные соединения, которые выделяются из геологически активного района Южного Полюса.

В мае 2011 года ученые НАСА на конференции, посвященной этому спутнику, заявили, что Энцелад можно считать самым первым претендентом на обнаружение жизни.

8) Тёмный поток

Темный поток, обнаруженный в 2008 году, предоставил ученым больше вопросов, чем ответов. Скопления материи во Вселенной, как оказалось, двигаются на очень большой скорости в одном и том же направлении, что невозможно объяснить с помощью любой известной гравитационной силы в пределах обозримой части Вселенной. Этот феномен был назван «Темный поток».

Наблюдая за большими скоплениями галактик, ученые обнаружили около 700 галактических скоплений, двигающихся с определенной скоростью по направлению к отдаленной части Вселенной. Некоторые ученые даже осмелились предположить, что Темный поток двигается из-за давления, вызванного другой Вселенной. Однако некоторые астрономы вообще оспаривают существование темного потока.

9) Экзопланеты

Первые экзопланеты, то есть планеты, существующие за пределами Солнечной системы, были открыты в 1992 году. Астрономы открыли несколько мелких планет, вращающихся вокруг звезды Пульсар.

Первая гигантская планета была замечена в 1995 году возле близкой от нас звезды 51 Пегас, которая делала полный оборот вокруг этой звезды за 4 дня. К маю 2012 года в энциклопедии экзопланет было зарегистрировано уже 770 экзопланет. 614 из них являются частью планетарных систем и 104 – множественных планетарных систем.

К февралю 2012 года миссия НАСА «Кеплер» выявила 2321 неподтвержденных кандидата на звание экзопланет, которые связаны с 1790 звездами.

10) Первая планета в обитаемой зоне

В декабре 2011 года НАСА подтвердила сообщения об открытии первой планеты, которая расположена в обитаемой зоне, вращаясь вокруг своей родной звезды, похожей на Солнце. Планета получила название Kepler-22b. Ее радиус в 2,5 раза больше радиуса Земли, и она обращается вокруг своей звезды в пригодной для появления жизни зоне. Ученые пока не уверены относительно состава этой планеты, однако это открытие явилось серьезным шагом на пути к обнаружению похожих на Землю миров.

Источник: https://www.infoniac.ru/news/10-samyh-poslednih-kosmicheskih-otkrytii.html

10 заблуждений о космосе, в которые стыдно верить

что происходит в космосе на данный момент

Во многих фильмах можно увидеть такую картину: человек оказывается в открытом космосе без скафандра (либо с повреждённым скафандром) и быстро замерзает, превращаясь в хрупкую ледяную статую, трескающуюся от любого воздействия.

Что на самом деле. У космоса нет температуры. Он не холодный и не горячий — никакой : в вакууме нет конвекции и теплопроводности. Вообще, вакуум — хороший термоизолятор. Так что у астронавтов больше проблем с перегревом , чем с переохлаждением.

И если вы окажетесь в космосе без скафандра в тени планеты, то, скорее всего, испытаете лёгкую прохладу из‑за испарения воды с поверхности кожи. Но до твёрдого состояния точно не заморозитесь.

2. Люди могут лопнуть в космосе

Кадр из фильма «Вспомнить всё», 1990 год.

Бытует мнение, что в вакууме или в атмосфере с низким давлением, например на Марсе, человек может взорваться, как воздушный шарик. Глаза вылезут из орбит, сосуды полопаются, и незадачливый астронавт превратится в кровавое месиво.

Что на самом деле. Давление в вакууме отсутствует, и это может привести к тому, что ваши лёгкие лопнут , если вы не выдохнете, прежде чем выпрыгнуть из корабля. В крови начнут появляться газовые пузырьки (это называется эбуллизм ), на теле образуются отёки. Но кожа человека слишком упругая, и она не позволит вам взорваться.

Эксперименты на собаках показали, что в вакууме можно без последствий находиться до полутора минут, и после этого организм быстро восстановится. А вот более длительное пребывание летально из‑за гипоксии, то есть нехватки кислорода.

3. У Луны есть тёмная сторона

Тёмная сторона луны не такая уж тёмная. Снимок с зонда Lunar Reconnaissance Orbiter NASA, moon.nasa.gov

Когда люди говорят «тёмная сторона Луны», то представляют себе мрачное место, куда никогда не падает солнечный свет. Наверное, именно поэтому там строят свои базы нацисты и десептиконы.

Что на самом деле. Все стороны Луны освещаются Солнцем, и на ней есть день и ночь — правда, длятся они по две недели. Тем не менее у спутника Земли есть обратная сторона. Но из‑за того, что период вращения вокруг нашей планеты и вокруг собственной оси у Луны схожи, с Земли видно только одно её полушарие. А первые снимки другого были сделаны советской АМС «Луна‑3» ещё в 1959 году. И ничего особо таинственного там нет.

4. Чёрные дыры выглядят как воронки

Чёрная дыра в представлении художника, news.sky.com

Из‑за фильмов и картинок в интернете многие люди полагают, что чёрные дыры выглядят как вихрь, засасывающий всё вокруг себя. Или как воронка в раковине, куда стекает вода.

Что на самом деле. Впервые чёрную дыру показали реалистично в фильме «Интерстеллар», основываясь на теоретических моделях физика Кипа Торна. Уже позже NASA сделало первый её снимок с помощью системы из восьми радиотелескопов Event Horizon Telescope. В реальности чёрная дыра выглядит не как воронка, а как тёмная сфера, окружённая аккреционным диском из падающего на неё газа.

5. Солнце жёлтое

Снимок Солнца, сделанный астронавтом NASA Терри Вёртсом с борта МКС в 2015 году, space.com

Если вы попросите кого‑нибудь нарисовать наше светило, то начинающий художник непременно возьмёт жёлтый карандаш. Взгляните на Солнце, и убедитесь, что оно имеет такой оттенок.

Что на самом деле. Желтоватым Солнце делает наша атмосфера. И если взглянуть на снимки из космоса, становится понятно, что его цвет — белый . Но мы так привыкли считать Солнце жёлтым, что даже учёные классифицируют похожие на него звёзды как «жёлтые карлики» просто для удобства.

6. Первой в космос полетела собака Лайка

Героическая дворняга‑космонавт, infuture.ru

Кто первым полетел в космос? Конечно, Юрий Гагарин. А из братьев наших меньших? Собака по имени Лайка, это всем известно. Она была обычной дворнягой из приюта, отправившейся первой покорять космос.

Что на самом деле. Лайка действительно первой оказалась на орбите Земли. Но в космосе бывали живые существа и до неё. В феврале 1947 года американцы с помощью трофейной немецкой ракеты «Фау‑2» отправили в суборбитальный полёт несколько плодовых мушек (дрозофил), чтобы изучить на них воздействие космической радиации. Они долетели до высоты в 109 км, а границей космоса считается отметка в 80 км. Так что первыми его увидели мухи.

7. NASA потратило миллиарды на пишущую в космосе ручку

Та самая чудо‑ручка, spencerdub.me

Простыми ручками в космосе пользоваться нельзя, потому что чернила в стержне там не могут стекать вниз. И, согласно одной городской легенде , чтобы астронавты всё-таки смогли вести записи, NASA потратило 12 миллиардов долларов на изобретение специальной ручки. Она способна писать вверх ногами на любой поверхности при температуре от 0 до 300 °С. Советские же космонавты просто пользовались карандашами. Вот она, русская смекалка.

Что на самом деле. Поначалу и американцы, и русские пользовались в космосе карандашами, но это приводило к ряду проблем: частицы графита отслаивались и попадали в воздушные фильтры космических кораблей. А специальную ручку изобрёл Пол Фишер из Fisher Pen Company, и сделал он это независимо от NASA. Мужчина продал ведомству 400 штук по 2,95 доллара за каждую.

Наши космонавты тоже пользовались такими ручками. В своё время их закупали для работы на станции «Мир». Кстати, если хотите, можете тоже приобрести себе космическую ручку.

8. Через пояс астероидов трудно пролететь

Пояс астероидов в представлении художника, universetoday.com

Помните, как в «Звёздных войнах» Хан Соло мастерски пилотировал свой «Тысячелетний сокол», чтобы пробраться через пояс астероидов? Он умудрился обогнуть множество этих космических тел, да ещё и от погони имперских истребителей оторвался, хотя ежесекундно рисковал врезаться в парящие повсюду каменные глыбы.

Что на самом деле. В нашей Солнечной системе тоже есть свой пояс астероидов между орбитами Марса и Юпитера. Астрономы не уверены, сколько там каменных глыб, и называют приблизительное число в 10 миллионов. Но вы, даже не будучи крутым пилотом вроде Соло, легко пролетите сквозь них. Потому что среднее расстояние между астероидами в поясе — полтора миллиона километров. Это примерно в четыре раза больше, чем расстояние между Землёй и Луной.

Поэтому, чтобы в реальности врезаться в астероид, понадобится немалое старание и тщательные орбитальные манёвры. Вероятность не то что столкновения, но и просто незапланированного сближения космического корабля с каменной глыбой составляет менее чем один к миллиарду.

9. Космические корабли летают по прямой

Кадр из фильма «Прометей», 2012 год

В фильмах космические аппараты легко перемещаются из одного места в другое, просто развернувшись прямо к цели и включив двигатели. Точно так же, как автомобили или корабли на Земле. А если космолёту надо сесть на планету, он просто устремляется в её атмосферу на полной скорости.

Что на самом деле. В реальности космические аппараты двигаются от одной орбиты к другой по дугообразной гомановской траектории. И у них при этом отключены двигатели. Они включаются два раза, для разгона в начале и для торможения в конце, остальной путь корабль проделывает по инерции.

Если хотите самостоятельно поуправлять шаттлом и вживую увидеть движение по гомановской траектории, попробуйте поиграть в космический симулятор Kerbal Space Program. Он даёт наглядное представление об основах орбитальной механики.

Да, и ещё: корабли, собирающиеся приземлиться, сходят с орбиты, развернувшись двигателями по ходу движения, чтобы затормозить. В голливудских блокбастерах вроде «Прометея» такого не покажут, чтобы у зрителя не возникло вопроса, почему челноки летают задом наперёд.

10. Летом тепло, потому что Земля ближе к Солнцу

Солнце и Земля, sunearthday.nasa.gov

Смена времён года вызвана меняющимся расстоянием от Земли до Солнца. Логично, правда? К сожалению, иногда так думают не только маленькие дети, но и вполне взрослые люди.

Что на самом деле. Орбита Земли не совсем круглая — она эллиптическая. Наша планета достигает перигелия (точки на орбите, ближайшей к Солнцу) в январе и афелия (самой дальней точки от Солнца) примерно через шесть месяцев. Если бы от этого зависела погода, у нас было бы лето в январе и зима в июле.

Сезоны меняются из‑за наклона оси вращения Земли относительно её орбитальной плоскости (эклиптики). Движение по орбите действительно вызывает температурные колебания в пределах 5 °С, но этого недостаточно, чтобы устроить смену времён года.

Источник: https://Lifehacker.ru/zabluzhdeniya-o-kosmose/

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие российские космонавты находятся в космосе в 2020 годуи какую работу они выполняют на орбите? Кто полетит следующим экипажем,расписание долговременных космических экспедиций на МКС.

Работа по освоению космоса – одна из важнейших в России,большая часть научной деятельности и экспериментов, связанных с ней, являютсясильнейшим катализатором для остальных сфер развития.

 

Несмотря на определенные сложности с финансированием и даже авариями в последнее время, работа продолжается, и российские астронавты продолжают летать на орбиту, поддерживая мировое признание России, и внося свою лепту в мировое развитие.

Кто сейчас в космосе? 

Кто сейчас в космосе? 

25 сентября космический корабль «Союз-15» привез на МКС трех новых космонавтов — россиянина Олега Скрипочку, американку Джессику Меир и гражданина ОАЭ Хаззаа Аль-Мансури. 

Их радостно (но втайне с долей уныния в душе) встретили шестеро членов предыдущей экспедиции — Алексей Овчинин, Ник Хейг, Кристина Кук, Александр Скворцов (Россия), Лука Парминтано (Италия) и Эндрю Морган (США). Тогда на маленькой станции оставались целых 9 человек.

3 октября корабль МС-12 увез трех членов экипажа на Землю. МКС покинули Александр Овчинин, араб Хазаа аль-Мансури и американец Ник Хейг.МКС в последнее время используется по максимуму, поэтому проживание в тесных модулях большого количества людей является одним из экзаменов на выдержку. Неслучайно кто-то в предыдущие полеты намеренно сверлил отверстия в обшивке станции.Пять месяцев в тесноте пролетели быстро.

6 февраля МКС покинули Александр Скворцов, Кристина Кук и Лука Пармитано.  

Таким образом, сейчас на МКС осталось 3 человека:

Интересно, что из неопытных космонавтов в этот раз отправлен только американец Эндрю Морган — он в космос полетел первый раз. Россия уже предпочитает отправлять мужчин, которые имеют за плечами богатый космический опыт, новичков отправляют реже.

Итак, список экспедиции МКС-61 (3 человека):  

Командир:

  • Олег Скрипочка (25/26/47/48/60/61/62);

Бортинженеры:

  • Джессика Мейер (61/61/62);
  • Эндрю Морган (60/61/62).

Кто скоро прилетит на МКС: пока программа следующих полетов утверждается. 9 апреля к нынешним членам экипажа возможно присоединятся Кристофер Кэссиди, Андрей Бабкин, Николай Тихонов.

Фото и биографии россиян, которые побывали в космосе в последнее время

Фото и биографии россиян, которые побывали в космосе в последнее время

В настоящее время стать космонавтом проще, чем раньше, носчастливчиков все же очень мало. За год на орбите бывает не более 10-15 человек,из России – 5-6 человек. Однако, примечательно, что берут в настоящее времякосмос не только бывших летчиков, но и людей других специальностей. Итак, в последние годы в космосе следующие российские космонавты выполняли свою работу:

Олег Скрипочка — родился в 1969 году. Закончил МГТУ имени Баумана. Работал в НПО «Энергия» слесарем, в 1997 года зачислен в отряд космонавтов-испытателей. В космосе третий раз. 

Алексей Овчинин — весьма опытный космонавт, 1971 года рождения. Уже летал к МКС в 2016 году. Закончил Борисоглебское училище летчиков, Ейское высшее училище, дополнительное образование получил в Академии народного хозяйства. Занимался подготовкой пилотов на самолетах Як-52 и Л-39. 

Александр Скворцов — российский летчик, космонавт уже неоднократно бывавший в космосе. Герой РФ. Служил в истребительном полку ПВО, летчик 1 класса. Окончил Ставропольское училище летчиков и военную академию ПВО имени Жукова. 

Олег Кононенко — профессиональный космонавт, 1964 года рождения. Это уже его четвертый полет. Закончил Харьковский авиационный институт, является специалистом по двигателям. С 1996 года приступил к космической подготовке. 

 Сергей Прокопьев — 1975 года рождения. Выпускник Тамбовского и Оренбургского военных авиационных училищ, имеет также диплом бухгалтера Мичуринского аграрного университета. Бывший командир бомбардировщиков Ту-22 и Ту-160. В космосе первый раз.   

Олег Артемьев – опытный специалист, командир, 1970 года рождения, второй раз на орбите. Родился в Риге, сын военного инженера. С детства увлекался авиацией, занимался спортом и борьбой. Закончил университет им. Баумана, академию госслужбы. С 1998 года работал в РКК «Энергия», занимался подготовкой экипажей к полетам, а в 2003 году сам стал космонавтом. 

Антон Шкаплеров – участник трех космических экспедиций, 1972 года рождения. В 1994 году окончил Высшее Авиационное училище в Качинске, в 1998 – Военную академию им. Жуковского, в 2018 году – академию госслужбы. Работал летчиком-инструктором группы пилотажа «Воздушные гусары», с начала 2000-х переведен в космическое подразделение.

Что интересно – оба последних пилота заканчивали академиюГосударственной службы при президенте РФ по гуманитарной специальности вкачестве дополнительного образования. Это может быть, как негласным требованиемиметь третью нетехническую специальность, либо при данной академии онипроходили какую-то специальную подготовку, например, при участии спецслужб.  

Какую работу выполняют космонавты на орбите?  

Какую работу выполняют космонавты на орбите?  

В составе последней экспедиции 61/62 основной задачей перед космонавтами стоит инсталляция оборудования, поступившего с последней грузовой доставкой. МКС постоянно развивается и растет, поэтому в космосе в ближайшие месяцы будут производить большой «ремонт». 

Один из самых впечатляющих достижений в ходе последней экспедиции — печать на 3Д-принтере внутренних органов мыши.  

Российские и американские космонавты на Международнойстанции выполняют работы по стыковке новых модулей, берут пробы с внешнихпанелей корабля, проводят биологические и физические опыты. Программы каждогополета составляются задолго до существования старта, перед с космонавтамиставятся задачи по увеличению безопасности, также на высоте идёт проверка новыхтехнологий.  

В ходе экспедиции 60/61 в 2019-2020 году предусмотренследующий список экспериментов и научных направлений:

Наименование Количество процедур
Физические и химические взаимодействия, тестирование материалов и сред в условиях космоса. 6
Исследование планеты Земля и Галактики. 6
Работа в открытом космосе. 13
Биоинженерия, биотехнологии, растениеводство. 11
Освоение космоса и наблюдение. 17
Образовательная и исследовательская работа. 7

Всего предусмотрено более 300 опытов и исследований. Обычно сегменты деятельности по странам на МКС имеют своиакценты. Например, американцы и европейцы сосредоточены на биологических имедицинских опытах, российские занимаются энергетикой, японцы — робототехникой.Однако, россияне тоже занимаются изучением биологических и химических областей.

Также за последние годы был внесен немалый вклад в мировую науку поисследованию Солнечной системы, проведены опыты по биологической коррозии,особенностям последствий малых инерционных сил в условиях невесомости.

Американские астронавты, конечно, нередко добиваются больших результатов в видуувеличенных экипажей и большего бюджета. Однако, россияне выполняют сложнейшие работы в открытом космосе.  

Так что, на вопрос какие космонавты находятся в космосе в2020 году сейчас, можно ответить однозначно, что сейчас в космосе только 1 человек из россиян — это Олег Скрипочка, остальные — иностранцы.

Источник: https://novosti-online.info/2761-kakie-kosmonavty-nahodyatsya-v-kosmose.html

10 последних открытий в космосе

10 последних открытий в космосе

(согласно списку Терезы Корнелиус)

Чем сильнее развиваются современные технологии, тем больше открывается возможностей для того, чтобы больше узнать о нашей Вселенной. В последнее время стало возможным подтвердить такие факты о Вселенной, о которых раньше мы могли только догадываться. Вот список некоторых из недавних открытий в космосе. Наслаждайтесь!

10. Открыт новый спутник Плутона (P4)

10. Открыт новый спутник Плутона (P4)

 Теперь нам известно, что вокруг Плутона вращается четыре спутника.

Харон был открыт в 1978 году и является крупнейшим из спутников Плутона. Его диаметр, по современным оценкам, составляет 1205 км – чуть больше половины диаметра Плутона, а соотношение масс составляет 1:8. Для сравнения, соотношение масс Луны и Земли равняется 1:81.

Из-за такого малого соотношения масс Харон и Плутон часто рассматриваются в качестве двойной карликовой планеты. В 2005 году с помощью космического телескопа Хаббл обнаружили еще 2 спутника Плутона – Никту и Гидру. Предположительно диаметр Никты – 46 км, а Гидры – 61 км.

Открытие спутника Плутона произошло в 2011 году, когда Хаббл сфотографировал небесное тело, которое временно называется P4. Его размеры составляют от 13 до 34 км. Как удивительно, что Хаббл сфотографировал такое крошечное тело, находящееся на расстоянии более 3 миллиардов километров от нас!

 9. Гигантские космические магнитные пузыри

 9. Гигантские космические магнитные пузыри

НАСА запустило в космос два зонда Voyager для изучения пограничной области гелиосферы, находящейся на расстоянии примерно 9 миллиардов километров от Земли.

Вопреки сформировавшимся за пятьдесят лет гипотезам, наблюдатели столкнулись на границе Солнечной системы не с линейным и постепенно убывающим магнитным полем, а с кипящей пеной из локально намагниченных областей протяженностью сотни миллионов километров каждый – подвижной ячеистой структурой, внутри которой линии магнитного поля постоянно разрываются, рекомбинируются и образуют новые области – магнитные «пузыри».

8. Не только у кометы есть хвост

8. Не только у кометы есть хвост

Специалисты NASA, работающие с научным спутником GALEX, в 2007 году сообщили об удивительном открытии. Звезда, носящая имя «Удивительная» – Мира, полностью оправдала свое название.

Сделанные GALEX в ультрафиолетовом диапазоне снимки позволили установить, что звезда, находящаяся в созвездии Кита, не только летит сквозь пространство с огромной скоростью, но еще и оставляет за собой хвост, как у кометы, длиной 13 световых лет.

 До этого открытия считалось, что звезды не могут иметь хвосты.

7. На Луне найдена вода

7. На Луне найдена вода

9 октября 2009 LCROSS – космический аппарат НАСА для наблюдения и зондирования лунных кратеров, часть его упала в районе кратера Кабеус, который находится на темной стороне Луны, на южном ее полюсе. В результате падения выброшено облако из газа и пыли.

LCROSS пролетел сквозь выброшенное облако, анализируя вещество, поднятое со дна кратера. Оказалось, облако частиц содержало не меньше 100 килограммов воды. Особенно неожиданным для учёных стало наличие на Луне большого количества ртути и серебра.

 Позже данные с трех космических аппаратов показали, что тонкая пленка воды  в некоторых областях покрывает поверхность почвы Луны.

 6. Эрис

 6. Эрис

В январе 2005 года на самом краю Солнечной системы была обнаружена маленькая планета Эрис, что вызвало дискуссии среди ученых о том, каково же на самом деле определение планеты. Названа открытая планета Эрис – в честь богини раздора в греческой мифологии.

 Эрис изначально считалась 10-й планетой Солнечной системы, но позднее она и другие объекты, расположенные в поясе Койпера, объединили в новый класс: карликовые планеты.

 Эрис находится за пределами орбиты Плутона и примерно такого же размера (диаметр планеты 2 326 километров) как Плутон.

Поверхность Эрис имеет необычайную яркость, ученые считат, что она покрыта  ледовой поверхностью. Поверхностный слой льда должен постоянно обновляться. Если бы этого не происходило, то под воздействием солнечных лучей и ударов метеоритов, она бы давно потеряла свою яркость. По предположениям, Эрис имеет атмосферу, в которой повышенное содержание метана.

Именно он периодически замерзая и оттаивая производит обновление поверхностного слоя льда. Эрис имеет один известный спутник, названный Дисномия (в греческой мифологии Дисномия – дочь богини Эрис). Период обращения планеты вокруг Солнца составляет 560 лет. Температура на поверхности около минус 250 градусов.

 Эрис и Дисномия наиболее удаленные из известных природных объектов в Солнечной системе.

 5. Вода на Марсе

 5. Вода на Марсе

В 2011 году НАСА сделало заявление, приложив к нему фотографии, что на Марсе может быть «текущая вода». Была сделана покадровая съемка, чтобы показать, как жидкость бежала по склонам гор, расположенных в средних широтах южного полушария Красной планеты. Темные полосы увеличиваются в размерах в период весны и лета и вновь пропадают к зиме.

Наиболее обоснованно предположение ученых, что это потоки соленой воды, которая достаточно сильно нагревается, когда на планете летние месяцы. Льды расплавляются и заливают поверхность. Предполагаемые ручьи шириной от полуметра до пяти метров достигают в длину нескольких сотен метров.

 Признаки того, что на Марсе когда-то была проточная вода, были обнаружены и раньше, но это первый случай, когда такое событие наблюдалось в течение короткого периода времени.

 4. Энцелад и его вулканы

 4. Энцелад и его вулканы

Энцелад – шестой по размерам спутник Сатурна. Был открыт в 1789 году. Благодаря наблюдениям с «Вояджеров» было установлено, что диаметр Энцелада составляет примерно 500 км и что поверхность Энцелада отражает почти весь падающий на неё солнечный свет.

В 2005 году межпланетный зонд «Кассини» несколько раз прошёл вблизи Энцелада. Удалось рассмотреть своеобразный богатый водой шлейф, испаряющийся с южного полюса.

Также оказалось, что Энцелад – один из трёх небесных тел во внешней Солнечной системе (наряду со спутником Юпитера Иои спутником Нептуна Тритоном), на котором наблюдались активные извержения.

В 2011 году учёные NASA на «Enceladus Focus Group Conference» заявили, что Энцелад «наиболее жилое место в Солнечной системе за пределами Земли за все время её существования»

 3. Темный поток

 3. Темный поток

Темный поток открыт в 2008 году и таит в себе больше вопросов, чем ответов. Этот поток представляет собой скопление галактик, которые под воздействием неизвестной силы на огромной скорости, около 1 тыс. км в час, мчатся к границе видимой Вселенной. Эти скопления – часть потока, который растянулся приблизительно на 3 млрд. световых лет.

Движение темного потока не может быть объяснено ни одной из известных гравитационных сил в наблюдаемой Вселенной. Одно из возможных объяснений открытого явления предполагает, что причина потока – притяжение огромного скопления материи. Но Лаура Мерсини-Хоутон из Университета штата Северная Каролина (США) выдвигает еще более сенсационное объяснение.

 С ее точки зрения, «темный поток» – признак присутствия другой вселенной, соседствующей с нашей.

Пока эти объяснения и даже само существование «темного потока» единогласного признания не получили, и вокруг них идут горячие научные дискуссии.

 2. Планеты вне солнечной системы – экзопланеты

 2. Планеты вне солнечной системы – экзопланеты

Первые экзопланеты, были обнаружены в 1992 году.  Это планеты, обращающиеся вокруг звезды за пределами Солнечнойсистемы. Экзопланеты чрезвычайно малы и тусклы по сравнению со звёздами. Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой. Сейчас такие планеты стали открывать благодаря усовершенствованным научным методам.

К 17 мая 2012 года подтверждено существование 770 экзопланет в 613 планетных системах. По проекту «Кеплер»на 21 декабря 2011 года числится ещё 2326 экзопланет. Общее количество экзопланет в галактике Млечный Путь по новым данным от 100 миллиардов, из которых приблизительно от 5 до 20 миллиардов возможно являются «землеподобными». Большинство известных экзопланет – газовые гиганты и более походят на Юпитер, чем на Землю.

1. Первая планета в обитаемой зоне

1. Первая планета в обитаемой зоне

В декабре 2011 года, НАСА подтвердили обнаружение первой планеты, которая находятся в зоне жизни звезды почти идентичной Солнцу. Ученые назвали планету Кеплер-22b. Она расположена в «зоне Златовласки», в 600 световых лет от нас.

Планета имеет радиус примерно в 2,5 раза больше радиуса Земли, и вращается в комфортной обитаемой зоне.

Ученые не уверены в составе планеты: преобладают ли на ней скальные породы, жидкость или газ, но открытие оказалось огромным шагом в поиске «близнеца Земли».

Источник: https://evivid.ru/10_poslednih_otkrytiy_v_kosmose.html

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

Я как-то с детства привык отслеживать интересные события, которые происходят в космической отрасли, включая разного рода запуски космических аппаратов, находки астрономов и прочее.

Надо сказать, за последние несколько лет космос стал гораздо ближе к человеку, если так можно выразиться. Люди снова заинтересовались Вселенной, и тем, что там происходит. В общем, в этом небольшом обзоре предлагаю ознакомиться с самыми интересными «космическими» событиями года.

Ее основатель, голландец Бас Лансдорп собирает средства на отправку команды людей к Марсу. При этом у программы есть интересный нюанс: обратного билета просто нет, люди отправляются на Красную планету в один конец.

Требуются добровольцы, и, что интересно, они находятся в большом количестве. Тысячи человек подают заявки на участие в этом проекте. В начале года было отобрано более тысячи кандидатов, котоыре, если и полетят, то только через несколько лет.

Вот модель того, что может ожидать добровольцев на Марсе:

Заселение Марса будет проходить в несколько этапов: создание посадочного модуля, создание и транспортировка модулей для жизни колонистов, транспортировка колонистов, освоение Марса.

Самая большая цифрова камера запущена в космос

Самая большая цифрова камера запущена в космос

Знаковым событием является запуск космического телескопа GAIA. Цель этого телескопа, вернее, его команды — составление наиболее точной карты нашей галактики изнутри. Другими словами, телескоп будет составлять детальнейший снимок Млечного пути.

Пройдет еще 2 с половиной месяца, и телескоп войдет в полностью рабочий режим, о чем, я надеюсь, смогу здесь написать :)

В соседней галактике найдена сверхновая

В соседней галактике найдена сверхновая

Сверхновая звезда — это звезда, которая собирается взорваться, причем за короткое время такое светило увеличивает светимость до светимости небольшой галактики. Появление таких звезд — редкость, очень большая редкость. И необычайной удачей можно назвать то, что земные астрономы смогли найти сверхновую в соседней галактике.

Эта звезда находится на расстоянии 12 миллионов световых лет (соответственно, взорвалась она как раз 12 миллионов лет назад, а сейчас мы наблюдаем эту картину благодаря свету, дошедшему до нас).

Звезда эта за короткое время увеличила светимость в несколько порядков, со светимости 16 до светимости 6 (то есть, рассмотреть ее можно в обычный бинокль).

Opportunity на Марсе проработал 10 лет

Opportunity на Марсе проработал 10 лет

Представьте себе, марсоход, срок службы которого был рассчитан на 3 месяца, проработал на Марсе уже более 10 лет. При этом он остается полностью функциональным, оборудование этого марсохода из строя не выходило.

Вполне может быть, что марсоход сможет проработать на Красной Планете еще несколько лет, прежде, чем что-то таки случится (хотелось бы надеяться, что ничего такого не произойдет, но все же марсоход — очень сложный механизм, что-то когда-то да сломается).Этот трудолюбивый аппарат сделал для науки уже столько, чего ни один аппарат, устройство, до настоящего момента не делал.

 За 10 лет марсоход проехал 38,7 километров, смог «увидеть» 3556 марсианских рассвета, сделать много тысяч фотографий, переданных на Землю, а также получил доказательства существования воды на поверхности Марса. В прошлом году, в начале лета, как раз и были получены доказательства существования на Марсе (в прошлом) пресной воды.

Шестигранный шторм на Сатурне

Шестигранный шторм на Сатурне

Большой вихрь на Юпитере — буря, равной которой нет на Земле. Это атмосферное явление существует уже несколько сотен лет, и астрономы наблюдают за его развитием. Но вот Сатурн до настоящего момента считался спокойной планетой, газовым гигантом.

А ведь именно там был обнаружен шестигранный шторм, размер которого составляет 30 тысяч километров в поперечнике. Атмосферные массы вращаются там со скоростью в 320 километров в час. Это — пока что максимум для Солнечной системы.

Шестигранный шторм даже получил собственное название — планетарный гексагон.

Rosetta — высадка на комету

Rosetta — высадка на комету

Такое событие, как посещение космическим аппаратом какой-либо планеты/космического тела, является уникальным. И именно такое событие должно будет произойти в ноябре этого года.

Несколько лет назад в космос был выпущен космический аппарат «Розетта» — это межпланетная космическая станция с модулем высадки на борту.

В начале этого года «Розетта», так называется станция, «проснулась» спустя два года, и теперь она, и ее посадочный модуль готовы к работе. Правда, работать устройствам придется не сейчас, а ближе к осени, когда планируется высадка на комету Чурюмова-Герасименко.

Если высадка пройдет хорошо, гладко, ученые получат огромное количество данных о строении и происхождении комет.

Кстати, посмотреть на то, что собой представляет миссия «Розетта» можно вот по этой ссылке (это 3D модель всей миссии, причем модель интерактивная, все можно покликать, подвигать).

Составлена точная панорама Млечного Пути

Составлена точная панорама Млечного Пути

Благодаря современному оборудованию и развитию разного рода технологий, ученые смогли составить панораму Млечного Пути, увидев даже те участки, которые скрыты за космической пылью.

Из-за большого количества космической пыли, обычно увидеть, что за этой пылью, невозможно, а благодаря инфракрасному телескопу это стало возможным. Оказалось, что наша Галактика «пронизана с пузырьками» – полостями излучающими радиацию и ветер.

Данные позволяют ученым построить более глобальную модель звезд и образование звезд в галактике, которое называют «импульсом» Млечного Пути.

Обнаружена крупнейшая звездаКрупнейшая из всех, найденных астрономами до сих пор. Эта звезда расположена в 16 тысячах световых лет от нас. Ее размер — в полторы тысячи раз (!) больше Солнца. Это красный сверхгигант, который, в конечном итоге, должен превратиться в сверхновую.

Кроме того, эта звезда окружена водородным облаком, которое светится.

Подледный океан  на Энцеладе

Подледный океан  на Энцеладе

Энцелад — это спутник Сатурна, причем спутник маленький. Он вроде как не представлял интереса для ученых, но сейчас оказалось, что Энцелад — интереснейший объект. Дело в том, что астрономы «засекли» на Энцеладе выбросы жидкости и пара.

Считалось, что все это может быть влиянием Сатурна, который якобы нагревает поверхность своего спутника, путем гравитационных возмущений. Оказалось же, что эти выбросы — следствие существования океана, подледного огромного океана из воды, в котором, теоретически, может существовать жизнь.

Диаметр самого Энцелада составляет 500 километров, а океан (скорее, подледное озеро), залегает  на глубине 30-40 километров.

Источник: https://xage.ru/chto-sluchilos-v-kosmose-v-etom-godu-sobytija-na-zemle-i-v-kosmicheskom-prostranstve-/

15 фактов о космосе, которые шокируют вас

15 фактов о космосе, которые шокируют вас

Космические исследования в реальной жизни так же размыты, как и в кино. Это область, в которой не всегда можно получить точные данные. О размерах и масштабах Вселенной не знают даже лучшие ученые. Однако с каждый днем происходит все большее ее освоение.

Что все же известно исследователям о космосе, чего, возможно, еще не знаете вы?

Запись космических звуков

Запись космических звуков

НАСА использует технологию, называемую ультразвуковой обработкой данных, чтобы принимать сигналы радиоволн, магнитных полей, а также плазменных волн. И преобразует эти сигналы в звуковые дорожки, чтобы «слышать», что происходит в отдаленном космосе.

Довольно жуткие звуки варьируются от мрачных всплесков до сигналов, напоминающих приближающийся космический корабль.

Синие закаты Марса

Синие закаты Марса

Факт о подобном явлении стал известен в 2015 году, когда удалось получить первое цветное фото этой планеты.

Ученые поясняют визуальный эффект свечением мелких частиц в атмосфере Марса, которые позволяют цветовым голубым волнам проникать в атмосферу эффективнее, чем «более длинным», таким как красный, желтый и оранжевый.

Посылка в космос безумно дорогая

Посылка в космос безумно дорогая

Разделив стоимость запуска на вес груза, можно получить ошеломляющие цифры. Так, один лимон, отправленный в космические просторы, будет стоит 2000 долларов.

Еще не так давно каждые 450 грамм груза стоили 10 000 долларов. Теперь же цены резко возросли: до 43 180 $ для космического корабля «Лебедь» и 27 000 $ для новых носителей SpaceX. Таким образом, для полета в космос бутылки воды нужно будет заплатить в пределах от 9100 до 43 180 долларов.

Космический мусор

Космический мусор

Космическое пространство наполнено многочисленным мусором, таким как части разрушенных ракет или неработающие спутники. Эти объекты все еще продолжают вращаться вокруг Земли со скоростью в 10 раз большей, чем скорость выстрела.

За космическим мусором наблюдают, чтобы виновные в его распространении несли за это ответственность. Однако его количество уже превысило 23 000 объектов. Лидирующими в этом списке являются США, Россия и Китай. Под ответственностью каждой из трех стран немногим меньше 4000 объектов.

Мусор этот опасен возможным столкновением, способным вызвать огромное мусорное облако из-за цепной реакции. Что и показывает нам фильм «Гравитация».

Сохранение следов на Луне

Сохранение следов на Луне

Лунные породы разрушаются настолько медленно (на 10 мм в 1 млн лет), что следы космонавтов могут сохраняться на ее поверхности в течение 10-100 млн лет.

Именно столько могут просуществовать на нашем естественном спутнике следы астронавтов, прилетевших на Луну на «Аполлоне-11» в 1969 году.

Температура космического пространства

Температура космического пространства

Здесь не всегда холодно. В самых отдаленных уголках температура может опускаться до -270 °C. Но если приблизиться к Земле, где Солнце окружает все своими лучами, то можно наблюдать повышение температуры до 120 °C.

Скафандры астронавтов белого цвета, чтобы они могли отражать тепло.

Год короче дня

Год короче дня

Венера вращается довольно медленно, в противоположном от Земли направлении. Полное ее вращение проходит за 243 наших дня, что и является ее обычным днем.

Но она расположена близко к Солнцу, потому проходит вокруг него всего за 225 дней. Таким образом, получается, что год на Венере немного короче дня.

Мкс размером с футбольное поле

Мкс размером с футбольное поле

Международная космическая станция является самым большим объектом, отправленным людьми в космос. Длина ее — 108 метров, а вес — почти 420 000 кг.

Во время исследований здесь побывало 230 человек из 18 разных стран.

Без скафандра

Без скафандра

Вопреки факту, показанному в фильме «Гравитация», без скафандра в космосе вы продержались бы не больше 15 секунд.

Ровно на столько хватит всего кислорода, что есть у вас крови. После этого воздух в легких будет расширяться из-за отсутствия давления в атмосфере, что разорвет ткани. Также в незащищенном организме произойдет закипание крови и отсутствие контроля кишечника.

Космические преступники

Космические преступники

Существуют определенные законы, согласно которым нельзя выводить на орбиту оружие массового поражения, а все исследования должны проводиться лишь в мирных целях. Любая страна несет ответственность за запускаемый в космос объект и ущерб, который он может нанести.

Поэтому ООН следит за космическим пространством и находящимися в нем объектами с людьми. Какие-либо противоправные действия могут сделать астронавта космическим преступником.

Космическое пространство

Космическое пространство

Можно подумать, что кроме планет и звезд здесь ничего нет. Несмотря на то что это недалеко от истины, космическое пространство все же не совсем представляет собой вакуум.

В нем есть небольшая плотность частиц. Это облака космической плазмы, звездной пыли и космических лучей.

Чернота пространства

Чернота пространства

Казалось бы, такое огромное количество звезд должно было заполнить пространство светом, а оно черное. В 1823 году немецкий астроном решил, что яркость статичной Вселенной, равномерно заполненной звездами, должна быть равна яркости солнечного диска. Явление назвали «парадоксом Ольсберга».

Позже оказалось, что никакой равномерной наполненности звездами нет, потому как некоторые из них существовали не так долго, чтобы их свет еще мог достигать Земли сейчас, а Вселенная имеет способность расширяться. Отсюда и чернота пространства, которое не может быть равномерно освещено.

Неоспоримый лидер

Неоспоримый лидер

Солнце составляет 99,8 % всей массы Солнечной системы. Все остальное, включая нашу Землю, в сравнении с ним — просто пылинки.

Неудивительно, что оно миллиардами лет удерживает около себя планеты.

Черные дыры

Черные дыры

Согласно новому исследованию, Млечный Путь содержит десятки тысяч черных дыр. Эти объекты невозможно обнаружить в спокойном состоянии.

Однако когда они взаимодействуют со звездой, ученые могут находить их с помощью рентгеновских лучей.

Септиллион звезд

Септиллион звезд

Примерно такое количество звезд насчитывает Вселенная. Кстати, это число содержит 24 нуля после единицы. За девять лет наблюдений ученые выявили 10 000 галактик в самых темных глубинах Вселенной.

Только наша галактика Млечного Пути содержит около 100 млрд звезд. Умножив это число на количество галактик, получили предполагаемую цифру.

Однако это еще не окончательное количество, ведь остается много неизведанного космического пространства. По мнению ученых, эта цифра будет расти в их подсчетах, когда технологии будут более усовершенствованы для открытия новых галактик.

Нашли нарушение? Пожаловаться на содержание

Источник: https://FB.ru/post/environment/2018/5/13/26598

Что происходит с человеком в космосе?

Что происходит с человеком в космосе?

Человечество давно мечтает покорить Марс. В октябре 2016 года НАСА заявило своей приоритетной целью отправку людей на Красную Планету к 2030-м годам.

Физиология человека и невесомость

Физиология человека и невесомость

Для того, что бы успешно спланировать осуществить миссию на Марс, ученые должны понимать, как космос влияет на физиологию человека при длительных космических полетах.

Те данные, которые известны науке в настоящий момент, позволяют сделать выводы, что нахождение в космосе однозначно сказывается на человеческом организме. Как в физическом, так и интеллектуальном плане. К тому же риски, связанные с космическими полетами, существенно различаются в разных условиях. Они будут разными на орбитальной космической станцией и космическим кораблем, направляющимся на Марс.

Физические проблемы

Физические проблемы

У космонавтов будут опухшие лица (из-за того, что жидкости тела распространяются более равномерно). Они будут страдать от уменьшения плотности костной ткани и потери минеральных веществ. Сюда можно записать недостаток сна и солнечного света. И еще увеличение уровня железа и нарушенную координацию. 

Проект НАСА по изучению зрения и внутричерепного давления космонавтов показал, что многие из них испытывают ухудшение зрения после завершения полета. Это вызвано воздействием невесомости на мозг и спинномозговую жидкость. Эти расстройства могут длиться годами.

Исследования НАСА

Исследования НАСА

Космонавты, которые проводили длительные периоды времени в космосе, имеют структурные изменения глаз. Еще у них обнаружены аномально высокие уровни цереброспинальных жидкостей в головном мозге. Было продемонстрировано, что космический полеты также влияют на хрупкие окончания зрительных нервов.

Существуют свидетельства того, что воздействие галактического космического излучения увеличивает риск развития сердечно-сосудистых заболеваний. Возрастает риск рака, расстройств центральной нервной системы и острого лучевого синдрома. И эти риски могут быть даже серьезнее, чем считалось раньше.

Одно из проведенных исследований показало, что космонавты, покорившие Луну, в четыре раза чаще умирают от сердечно-сосудистых заболеваний. Если сравнивать с теми, которые не вылетали за пределы защитной магнитосферы Земли.

Кроме того, ученые все чаще исследуют психологические проблемы, связанные с космическими полетами. Космонавты, которые отправятся в дальние космические путешествия — на Луну, Марс и за его пределы, скорее всего будут изолированы во враждебной и стрессовой обстановке вместе с другими людьми, не имея возможности вернуться на Землю или быстро спастись.

Жизнь на Марсе

Жизнь на Марсе

Так что же происходит с нашим мозгом в космосе?

Один из экспериментов NASA по нейрокогнитивной эффективности сравнивал мозг космонавтов до и после пребывания на МКС в течение шести месяцев, используя сканирование FMRI. Ученые обнаружили снижение связанности моторных и вестибулярных областей мозга. Они необходимы для координации движения у космонавтов, осуществивших длительные космические полеты.

В условиях невесомости мозг продолжает посылать такие сигналы телу, как если бы оно находилось в нормальных условиях гравитации. И тогда тело начинает думать, что оно падает или находится в перевернутом положении. Через некоторое время мозг более или менее приспосабливается к новой среде. Но при возвращении на Землю изменение рефлексов может вызвать длительные проблемы.

Серия исследовательских программ НАСА

Серия исследовательских программ НАСА

Американское космическое агентство проводит специальные исследования. Ученые пытаются выявить, охарактеризовать и предотвратить проблемы с поведенческим здоровьем, связанные с космическими полетами. В исследовании используются ситуации, сопоставимые с земными. Такие как помещение групп людей в полной изоляции от внешнего мира на длительные периоды времени. При этом исследуются сон и усталость, проблемы сплоченности групп и возможные неблагоприятные психиатрические условия.

В 2014 году исследование Джона Хопкинса обнаружило признаки когнитивных нарушений в результате условий, которым подвергаются космонавты. Особенно сильное влияние оказывает космическое излучение, постоянно воздействующее на людей в космосе.

В октябре 2016 года UC Irvine было проведено исследование. Оно показало, что воздействие галактических космических лучей может вызвать долгосрочные когнитивные проблемы для космонавтов. Включая хроническую деменцию. В нескольких тестах, в которых были использованы грызуны, обнаружилось, что животные страдают как от воспаления головного мозга, так и от уменьшения взаимосвязи между нейронами даже через шесть месяцев после первоначального воздействия.

Животные также плохо выполняли тесты памяти. Они демонстрировали повышенную тревогу и страх, с уменьшенной способностью компенсировать стрессовые и неприятные ассоциации.

Эти выводы, по понятным причинам, вызвали опасения по поводу запланированного полета на Марс. Ведь космонавты надолго окажутся вне магнитного поля Земли, защищающего их на борту МКС. Они могут столкнуться с повышенными уровнями стресса и тревоги, наряду с нарушенными возможностями принятия решений и утратой возможности работы в режиме многозадачности. А это потенциально важные свойства психики при работе в чрезвычайных ситуациях.

Эти проблемы представляют собой головную боль для НАСА. Космические корабли обеспечивают очень ограниченную защиту от космических лучей. Их можно остановить только серьезной массивной защитой.

Установка на всем космическом корабле защитного внешнего экрана будет финансово нецелесообразной. Идея защитить изолированную часть космического корабля, в которой космонавты проводили были основную часть времени, более жизнеспособна, и вполне могла бы решить часть проблемы.

Тем не менее космонавты по-прежнему будут уязвимы к событиям солнечных бурь и вспышек. Их нелегко предсказать.

Манипуляция мозгами космонавтов

Манипуляция мозгами космонавтов

Одна из трудностей в изучении влияния космоса на интеллект космонавтов, в частности космическое излучение, заключается в том, что многие факторы, влияющие на них, обусловлены стрессовой обстановкой космического корабля. Эти факторы включают многие проблемы. Это нарушенный сон, тяжелые умственные нагрузки, высокий уровень углекислого газа и микрогравитация. В среднем, космонавты спят менее 6 часов в сутки. И должны концентрироваться и тренироваться в течение нескольких часов в день.

Типичная экспедиция на Марс будет длиться около трех лет. Это означает, что космонавты будут находиться в ограниченном пространстве с группой людей в течение очень долгого времени. Без возможности вести в режиме реального времени общение с семьей и друзьями с Земли. В настоящее время несколько компаний по заказу НАСА разрабатывают как лекарственные препараты, так и разнообразные методики для преодоления таких проблем.

В ситуации, когда космонавты учатся решать свои межличностные конфликты только с помощью компьютерной терапии и психоактивных веществ, будет трудно предсказать, что может случиться, если эти способы будут неэффективны или вызовут зависимость. Смогут ли космонавты сотрудничать и эффективно работать в течение нескольких месяцев, если они будут зависеть от таких методов лечения?

В будущем

В будущем

Космические путешествия захватывали воображение человечества на протяжении веков. И перед появившимися возможности и ресурсами для отправки людей в космос будет трудно устоять.

Эти попытки будут только ускорять исследования вопросов влияния космоса на неврологию и физиологию человека. И позволят находить способы, которыми наши мозги и тела будут приспосабливаться к отдаленным и отличным от Земли средам. Тем, где происходила вся наша эволюционная история.

Они, возможно, так же приведут к рассмотрению более дорогостоящих технических решений. Таких как использование искусственной гравитации для путешествий по маршруту Земля-Марс и Марс-Земля. Или более быстрый перелет (хотя и дорогостоящий с точки зрения энергетики, но позволяющий достичь Марса меньше чем за три месяца). Или может строительство удобных больших подземных жилых объектов на Марсе.

Источник: https://alivespace.ru/chto-proishodit-s-chelovekom-v-kosmose/

Факты про освоение космоса, о которых не все знают

Факты про освоение космоса, о которых не все знают

10 любопытнейших фактов об освоении космоса.

Секретные слова

Секретные слова

Во время первых полетов космонавты общались с Землей с помощью секретных слов, чтобы никто не мог догадаться, как все проходит. Такими словами служили названия цветов, фруктов и деревьев.

Например, космонавт Владимир Комаров в случае повышения радиации должен был сигналить: «Банан!».Для Валентины Терешковой (первой женщины-космонавта) пароль «Дуб» означал, что тормозной двигатель работает хорошо, а «Вяз» — что двигатель не работает.

Выход в открытый космос

Выход в открытый космос

Следующей задачей после полета Гагарина стал выход в открытый космос. Первым это сделал Алексей Леонов во время полета на космическом корабле «Восход-2».

Тогда никто не знал, как правильно вести себя в невесомости.

Выйдя в космос, Леонов оттолкнулся от шлюза, и его сильно закрутило, но страховочный трос удержал астронавта. Его ждала еще одна проблема: скафандр неожиданно сильно раздулся, и Леонов не мог вернуться на корабль.

Он просто не помещался в люк, пока не снизил давление воздуха в скафандре.

Из-за этого выход в космос длился не 12 минут, как планировалось, а в два раза дольше.

Сила притяжения и космические скорости

Сила притяжения и космические скорости

Космодромы строят как можно ближе к экватору, чтобы ракета при взлете могла использовать силу вращения Земли.

Это важно, потому что улететь в космос очень сложно. Массивные космические тела, такие, как планеты, с огромной силой удерживают все окружающее.

Чтобы улететь от Земли на расстояние, с которого она не сможет притянуть вас обратно, нужно набрать вторую космическую скорость.

При первой космической скорости невозможно улететь от Земли, но можно выйти на околоземную орбиту и вращаться вокруг нашей планеты, не падая и не улетая. Именно так делают все искусственные спутники Земли, в том числе МКС.

МКС

МКС

Международную космическую станцию (МКС) начали строить в 1998 году, а первые космонавты поселились на ней 31 октября 2000 года.

МКС собирали 10 лет как огромный, сложный и очень дорогой конструктор. Ее длина — 110 метров. Одновременно на МКС живут и работают шесть человек. МКС в полном смысле этого слова — международная станция, в этом проекте принимают участие 23 страны. За сутки

МКС облетает вокруг Земли 16 раз, поэтому космонавты видят 16 восходов и закатов.

Астронавты-рекордсмены

Астронавты-рекордсмены

Обеспечить существование космонавта на орбитальной станции очень сложно. На первых станциях экипажи находились не больше месяца, а на МКС живут теперь полгода.

Самый длительный в мире полет совершил Валерий Поляков — 438 суток (14 месяцев) подряд на станции «Мир».А мировой рекорд пребывания в космосе принадлежит Геннадию Падалке — за пять полетов он провел на орбите 878 суток (2 года и 5 месяцев).

Невесомость

Невесомость

В невесомости многое меняется. Например, увеличивается расстояние между позвонками и люди вырастают. Был случай, когда человек стал выше на 10,5 см!

А еще в невесомости очень легко передвигаться — космонавты просто летают внутри космической станции. Поэтому мышцы теряют силу, а кости становятся хрупкими. Больше всего страдают мышцы ног. Чтобы не разучиться ходить, космонавты принимают витамины и каждый день занимаются физкультурой. Они тренируются на беговой дорожке, к которой притянуты жгутами, чтобы не улететь.

Снимки из космоса

Снимки из космоса

Космические аппараты летают высоко над Землей, но с них хорошо видно все, что происходит на планете, — как будто перед вами живая карта.

Множество спутников постоянно фотографируют Землю и тем самым помогают составлять карты, прогнозировать погоду, предупреждать о бурях и извержениях вулканов, наблюдать миграции животных и рыб, отслеживать загрязнения природы.

Фотографии из космоса используются также для сельскохозяйственных, экологических и многих других задач.

Приземление

Приземление

Многие космонавты говорят, что спуск оставляет самые яркие впечатления от всего космического полета. Через иллюминатор они видят пламя, которое охватывает корабль во время прохождения плотных слоев атмосферы.

На Землю корабль опускается на большом парашюте, но он раскрывается не сразу, чтобы не было слишком сильного рывка.

Вначале раскрывается совсем маленький парашют, он вытягивает за собой второй — побольше, и только потом раскрывается главный большой парашют. Весь спуск на парашюте занимает 15 минут.

Восстановление

Восстановление

Сразу после возвращения астронавта на Землю начинается курс восстановления. На это уходит столько же времени, сколько человек провел на орбите, а иногда и больше.

Нужно заново учиться держать равновесие, тренировать мышцы и укреплять сердце.

Послание для инопланетян

Послание для инопланетян

В 1977 году были запущены американские космические аппараты «Вояджер I» и «Вояджер II». Тридцать лет они летели по Солнечной системе, изучая планеты, а в 2007 году покинули ее пределы и продолжают лететь дальше.

К каждому «Вояджеру» прикрепили алюминиевую коробку с посланием для инопланетян в виде позолоченного диска.

На диске записана информация о нас и нашей планете: музыка, приветствия на разных языках, фотографии с видами Земли, научные данные о человеке.

Источник: https://weekend.rambler.ru/read/42979356-fakty-pro-osvoenie-kosmosa-o-kotoryh-ne-vse-znayut/

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Тринадцать лет подряд Россия лидировала по количеству космических запусков. Но в 2016 году нас обогнали США и — впервые — Китай. В 2017 году одна частная компания SpaceX имеет шансы обогнать Россию по количеству запусков. Наше лидерство по этому параметру было предметом гордости, и его потеря стала поводом для расстройства. Насколько оно обосновано?

Количество пусков по странам с 2004 года

Большое количество российских запусков в последние годы имеет сразу несколько причин. Во-первых, развертывались прикладные спутниковые группировки — ГЛОНАСС для навигации, «Экспресс», «Ямал» для связи, «Ресурс» для дистанционного зондирования Земли, военные спутники. Во-вторых, активно запускались иностранные космические аппараты по коммерческим контрактам.

Когда в 90-х годах российские ракеты-носители вышли на мировой рынок, они оказались дешевыми и были очень востребованы.

Когда в 90-х годах российские ракеты-носители вышли на мировой рынок, они оказались дешевыми и были очень востребованы.

Специально созданная компания ILS предлагала выгодные цены на «Протоны», и с 1996 года было произведено уже 98 пусков на самую коммерчески востребованную геостационарную орбиту. В-третьих, по пилотируемой программе каждый год стартует 4 «Союза» с космонавтами и 4–5 грузовых «Прогрессов», это уже как минимум 8 пусков в год.

Сейчас ГЛОНАСС развернута и требует меньшего количества запусков для поддержания группировки. С коммерческими контрактами ситуация ухудшилась: на рынок пусковых услуг пришла частная компания SpaceX, составив конкуренцию ценам ILS.

В 2016 году авария «Протона» не привела к потере полезной нагрузки, спутник был успешно выведен на целевую орбиту, но расследование происшествия наложилось на обнаружение неправильного припоя в двигателях, и в результате «Протон» не летал почти год.

Даже в пилотируемой программе убрали один грузовой «Прогресс», из-за чего пришлось сократить российский экипаж МКС с 3 человек до 2.

Парадоксально, но сокращение пусков является следствием и одной хорошей причины. В 80-е годы СССР производил в районе сотни пусков в год, но его связные спутники «Стрела» могли работать на орбите только полгода, а разведывательные «Зениты» — всего две недели.

Когда срок активного существования спутников настолько мал, он сводит на нет эффект от большого количества запусков. Сейчас наши спутники стали работать на орбите гораздо дольше, поэтому и запускать новые на замену нужно реже.

Когда срок активного существования спутников настолько мал, он сводит на нет эффект от большого количества запусков. Сейчас наши спутники стали работать на орбите гораздо дольше, поэтому и запускать новые на замену нужно реже.

Также параллельно идет процесс замены ракет-носителей. Старые «Космос» и «Циклон» уже не летают, конверсионные «Днепры» тоже постепенно заканчивают свою карьеру. И если новый легкий «Союз-2.1в», впервые полетевший в конце 2013 года, в июне 2017 стартовал уже в третий раз, то у «Ангары» дела идут менее успешно.

После двух испытательных пусков в 2014 году она до сих пор не начала летать с настоящими спутниками. Дело не только в устранении неизбежных замечаний после первых — пусть и успешных — пусков. Центр имени Хруничева, на котором производится «Ангара», переносит производство ракет в Омск и сокращает площади в Москве на 80 %.

На фоне этих пертурбаций задержка с серийным производством, увы, закономерна.

Аварийность

Аварийность

Распространено мнение, что наши ракеты постоянно падают. Но статистика это не подтверждает. Если посмотреть относительную аварийность (количество аварий, разделенное на количество ракет), то видно, что показатели российской космонавтики находятся на сравнимом с другими странами уровне.

Относительная аварийность ведущих космических держав с 2004 года, потеря полезной нагрузки 1 балл, авария без потери полезной нагрузки — 0,5 балла

Кроме Европейского космического агентства, отличающегося почти нулевой аварийностью (причем единственное происшествие в 2014 году связано с нештатной работой российского блока «Фрегат» — спутники были выведены на нерасчетную орбиту, но успешно эксплуатируются), Россия, США и Китай показывают примерно одинаковую аварийность.

Почему же миф о постоянно падающих наших ракетах так живуч?

Почему же миф о постоянно падающих наших ракетах так живуч?

Во-первых, работа СМИ построена так, что успешный запуск проходит с минимальным освещением, а вот авария обращает на себя гораздо больше внимания.

Во-вторых, космонавтика воспринимается как составная часть престижа страны, поэтому есть силы, которые всячески подхватывают новости об авариях, чтобы использовать их для доказательства того, что «в стране все плохо». Существует целый список мемов, который регулярно достается по любому поводу и лично у меня уже в зубах навяз.

В-третьих, сама психология человека тяготеет к черно-белому мышлению, а для рационального анализа требуются интеллектуальные усилия. Ну и в-четвертых, несмотря на действительно хорошие усилия Роскосмоса по пиару, многое можно было бы сделать лучше.

Пиар

Пиар

Можно услышать мнение, что дела у Роскосмоса идут хорошо, но он не умеет пиариться. Это не совсем верно — пиар-активность Роскосмоса довольно заметна. У агентства есть активно ведущиеся страницы в социальных сетях. Космонавты участвуют в эфирах, ведут свои страницы, и, например, в Instagram фотографии с орбиты весьма популярны. В 2016 году большие усилия были затрачены на слоган «Подними голову!».

Много хороших слов можно сказать о ТВ Роскосмоса. Они выпускают на  две еженедельные передачи (до недавнего времени одна выходила на «России 24»), делают хорошие фильмы. Благодаря им мы можем подробно узнать о том, как тренируются космонавты.

Много хороших слов можно сказать о ТВ Роскосмоса. Они выпускают на  две еженедельные передачи (до недавнего времени одна выходила на «России 24»), делают хорошие фильмы. Благодаря им мы можем подробно узнать о том, как тренируются космонавты.

Также они создали хорошую видеоэнциклопедию «Космонавты» и сумели выпустить очень симпатичные ролики по астрономии «а что, если бы».

В то же время возникает ощущение, что работе не хватает ресурсов и системности. Например, старт пилотируемого корабля — важное и волнующее событие. Но нет его равномерного и заметного освещения. Иногда выделяется больше ресурсов, пуск комментируют и пытаются обратить на него больше общественного внимания. Но временами, наоборот, качество работы проседает.

Когда 28 июля стартовал пилотируемый «Союз», Северо-Западная Федерация космонавтики (энтузиасты-популяризаторы, не входящие в структуру Роскосмоса) организовала показ пуска на фестивале «Старкон». Но конкретно в этот раз качество трансляции было одним из худших за несколько последних лет, и это смазало старания людей.

Увы, но за равномерно качественным освещением пуска приходится идти на NASA TV.

К сожалению, не заметно, чтобы на пиар выделялись серьезные ресурсы. Доходит до смешного — больше пятидесяти лет ракеты семейства «Р-7» летали без бортовых камер. Европейское космическое агентство в 2014 году на свои деньги купило пару комплектов камер, поставило их на приобретенные российские ракеты и получило шикарную картинку разделения боковых блоков первой ступени.

Роскосмос один раз поставил камеры на ракету, стартовавшую с космодрома «Восточный» в 2016 году, и все. И это при том, что кадры с ракеты в реальном времени показывают не только блестяще владеющая пиаром SpaceX, но даже Китайское космическое агентство.

Ну и, наконец, в чем-то с пиаром Роскосмосу банально не повезло. Самый зоркий телескоп, «Спектр-Р», который видит в тысячу раз лучше «Хаббла», работает в радиодиапазоне, и его результаты выглядят абсолютно не зрелищно при всей научной уникальности.

Ну и, наконец, в чем-то с пиаром Роскосмосу банально не повезло. Самый зоркий телескоп, «Спектр-Р», который видит в тысячу раз лучше «Хаббла», работает в радиодиапазоне, и его результаты выглядят абсолютно не зрелищно при всей научной уникальности.

Изображение галактики OJ287

Хорошо и плохо

Хорошо и плохо

Космическая отрасль любой страны имеет свои сильные и слабые стороны — кто-то достиг многого в одном, у кого-то преимущества в другом, и у всех свои проблемы.

Сильные стороны:

  1. Российская космонавтика имеет развитую прикладную составляющую. Одна из двух глобальных навигационных систем, геостационарные и низкоорбитальные системы связи, метеорологические спутники и спутники дистанционного зондирования Земли, группировки военных спутников — все это у нас есть. По количеству работающих спутников Россия занимает третье место после США и Китая.
  2. Однозначно сильной стороной является пилотируемая космонавтика. Корабль «Союз» — надежный и эффективный, и даже после начала полетов американских пилотируемых кораблей будет неплохо смотреться на их фоне. Он может быть не особо комфортным, но без проблем проработает до появления нового корабля «Федерация». Огромное количество знаний и технологий наработано по орбитальным станциям и долговременному пребыванию человека в космосе.
  3. Сохраняется первенство в отдельных направлениях. Например, у нас лучшие кислородно-керосиновые двигатели для ракет и отличные электрореактивные (ионные, плазменные) двигатели для спутников. Ракеты-носители «Протон» и «Союз» имеют огромную наработанную статистику эксплуатации, при этом постоянно модернизируются.
  4. Разрабатываются потенциально прорывные технологии — ядерный буксир, детонационные двигатели, гиперзвуковые технологии (пока что для военного применения, в будущем могут использоваться для космоса), метановые двигатели.

Слабые стороны:

  1. Нет собственных научных аппаратов за пределами земной орбиты. Да, они не могут пока принести прямую прибыль, но это интересные научные данные и много пиара. Частично эта проблема компенсируется участием в совместных проектах, когда наши приборы стоят на аппаратах других космических агентств — детекторы нейтронов на орбитах Луны и Марса, а также на «Кьюриосити» — наши. Проект «Экзомарс» является совместным с Европейским космическим агентством.
  2. Есть провалы в некоторых технологических направлениях. Несмотря на то что мы умеем производить кислородно-водородные двигатели, они до сих пор не переходят из лабораторий на серийные ракеты. А эти двигатели очень выгодны на верхних ступенях. Есть проблемы с элементной базой для космических аппаратов.
  3. Из лидера по выгодности коммерческих запусков наша космонавтика перешла в состав соревнующихся. Сейчас разрабатывается модификация «Протона» — «Протон Средний», который должен будет повысить конкурентоспособность на рынке пусковых услуг. Теоретически экономически эффективной должна была стать «Ангара», но без регулярных пусков нельзя сказать, оправдаются ли эти расчеты.
  4. Нет четкого видения плана развития космонавтики на несколько лет вперед. Внезапные новости о том, что, например, на «Восточном» не будет пилотируемой «Ангары», а космонавтов будет возить с Байконура еще не спроектированная до конца ракета «Союз-5» (она же «Феникс»/«Сункар») заставляют ожидать новых внезапных изменений.

Космонавтика России, увы, не находится «впереди планеты всей» — есть области, где нас обгоняют. В то же время и хоронить ее категорически не верно — работа идет активно и достаточно неплохо. В ближайшие годы Россия даже при инерционном движении останется в списке ведущих космических государств (США, Россия, Китай) и агентств (Европейское космическое агентство, 22 страны).

Источник: https://knife.media/russia-in-space/

Разница во времени на Земле и в космосе

Разница во времени на Земле и в космосе

В 20 в. было доказано, почему отличается время в космосе и на Земле. Разница создается благодаря действию гравитационного поля.

До научных открытий, совершенных ученым Альбертом Эйнштейном, время считалось неизменной величиной. Люди думали, что оно всегда и везде протекает одинаково.

Все изменила Общая теория относительности — согласно данному научному труду, пространство и время связаны друг с другом, а минуты и секунды отсчитываются неодинаково для тел движущихся и находящихся в состоянии покоя.

Учёные США провели исследования изменения пространства. Эксперимент заключался в запуске спутника, который благодаря наличию специального оборудования измерял и высчитывал влияние нашей планеты на пространство, которое ее окружает. Действительно, Земля как бы деформирует пространство, находящееся рядом с ней. Credit: rutvet.ru.

Важность теории Эйнштейна

Важность теории Эйнштейна

Вначале Эйнштейн назвал свою работу «К электродинамике движущихся тел». Теорией относительности она стала позже — когда научный мир, ознакомившийся с ней, сделал выводы, касающиеся «относительного» положения тел в пространстве.

Так, человек, находящийся на борту судна, к примеру на его палубе, бросающий камень по направлению к носовой части, не заметит разницы для себя, если корабль плывет или остается неподвижным. Объясняется феномен тем, что по отношению к кораблю местоположение человека всегда остается неизменным.

За десятилетний период с 1905 по 1915 год Эйнштейн разработал Общую теорию относительности, которая является одной из самых важных теорий в современной физике. Credit: shorts.ru.

Основные выводы

Основные выводы

Существует 2 основополагающих принципа, вытекающих из Общей теории относительности:

  1. Гравитационные поля создают пространственно-временное искривление.
  2. Для каждого объекта, находящегося в движении, время идет медленнее, чем для того, который остается в покое.

Благодаря релятивистскому замедлению времени для движущихся с ненулевой скоростью объектов любые физические процессы в нем происходят не так быстро, как в статическом положении.

Одним из принципов Теории относительности является пространственно-временное искривление. На схеме видно, как Солнце и другие планеты своей массой, как бы продавливают пространство вокруг себя, изменяя его. Credit: spacetime.ws.

Практический пример

Практический пример

Существует доказательство того, что для человека, летящего самолетом, время течет медленнее, чем для людей, которые находятся на Земле в состоянии покоя. Но этой разницы никто не почувствует, ведь она составит не более миллиардной доли секунды.

Ситуация меняется, когда скорость движущегося объекта многократно увеличивается.

Так, ракета, летящая со скоростью света, способна за 1 год преодолеть расстояние, составляющее 100 и более лет по земным меркам. Для самого космонавта, находящегося внутри такой ракеты, минутные стрелки двигались бы так же, как и всегда, — замедление заметили бы только земляне, каким-либо образом увидевшие часы, установленные в кабине корабля.

С другой стороны, космонавт, в этот момент посмотревший из иллюминатора на Землю и увидевший на ее поверхности часы, обратил бы внимание на их замедленный ход.

Несмотря на это, в действительности замедление возникает только у космонавта. Это связано с большой скоростью летящей ракеты и тем, что точки отсчета для корабля и планеты остаются неравноправными, ведь Земля постепенно передвигается по прямой траектории, а летательный аппарат перемещается с ускорением.

Искривление пространства и времени как причина относительности

Искривление пространства и времени как причина относительности

Любой физический предмет, обладающий ненулевым весом, изменяет вокруг себя пространственно-временные показатели.

Рядом с таким небольшим объектом, как яблоко, искривление минимально, а явные изменения происходят только в пространстве, окружающем массивные тела.

На фотографии — изображение одного квазара. Его свет, искривляется пространством вблизи массивной черной дыры (посередине) и доходит до нас в виде четырех отдельных пятен. Время рядом с черной дырой будет сильно замедлено. Credit: телескоп «Хаббл», NASA.

Земля своей массой создает гравитационное поле такой силы, что для объектов, находящихся на земной орбите, время проходит медленнее, чем на поверхности планеты.

Наличие временного несоответствия было выявлено при отправке сообщений со спутников на Землю.

Ощутимое пространственно-временное искривление возникает вблизи любых массивных тел — планет, звезд. Это было доказано опытным путем.

Свет квазара, расположенного неподалеку от мощной черной дыры, искривляется, время в той области также замедляется.

Это видно по тем пятнам, которые проявляются для земного наблюдателя через неравные временные периоды.

Уничтожение стереотипов

Уничтожение стереотипов

Из всего вышесказанного можно сделать вывод: время в космосе протекает по-разному.

Рядом с крупными объектами оно идет медленнее, а вдали от них, в пространстве без звезд и черных дыр, — быстрее.

Все это в корне рушит стереотип, согласно которому время представляется константой, некой постоянной величиной.

Когда скорость объекта приближается к скорости света, внутреннее время объекта, согласно расчётам, замедляется. Credit: spacetime.ws./v-kosmose.com.

Интересные факты

Интересные факты

Согласно теории относительности, любой предмет, на который действует гравитация, падает прямолинейно и равномерно.

Мяч, по которому ударили, движется не по дугообразной, а по прямой траектории. Он летит вверх и падает обратно на Землю из-за пространственно-временного искривления, поскольку траектории подброшенного предмета и планеты в установленный момент сходятся в 1 точке.

Атомные часы на Земле и в космосе

10 самых последних космических открытий

что происходит в космосе на данный момент
Наука

Чем совершеннее становятся технологии, тем больше возможностей открывается перед учеными и тем больше мы можем узнать о нашей Вселенной. С каждым годом космос открывает перед нами все больше своих тайн, в ближайшее время мы наверняка узнаем то, о чем раньше не могли даже догадываться. Узнайте о том, какие открытия в области космоса были сделаны в последние годы.

1) Еще один спутник Плутона

На сегодняшний день известно уже 4 спутника Плутона. Харон был открыт в 1978 году, и он является самым крупным его спутником. Диаметр этого спутника 1205 километров, что заставляет многих ученых полагать, что Плутон на самом деле является «двойной карликовой планетой».

Ничего нового не было слышно о ледяных телах, которые вращаются вокруг Плутона, до 2005 года, пока космический телескоп «Хаббл» не обнаружил еще 2 спутника – Никту и Гидру. Диаметр этих космических тел от 50 до 110 километров. Но самое удивительное открытие ждало ученых в 2011 году, когда «Хабблу» удалось запечатлеть еще один спутник Плутона, который временно называется P4. Его диаметр составляет всего от 13 до 34 километров.

Примечательным в данном случае является то, что «Хаббл» сфотографировал такой крошечный космический объект, который расположен на расстоянии около 5 миллиардов километров от нас.

2) Гигантские космические магнитные пузыри

Два космических аппарата НАСА «Войяжер» обнаружили магнитные пузыри в районе Солнечной системы, известной как Гелиосфера, которая расположена в 15 миллиардах километров от Земли.

В 1950-х годах ученые считали, что этот район космического пространства относительно ровный, но когда «Войяжер 1» достиг Гелиосферы в 2005, а «Войяжер 2» в 2008 году, они засекли турбулентность, которую образует магнитное поле Солнца, и там формируются магнитные пузыри, диаметром около 160 миллионов километров.

3) Хвост звезды Мира А

В 2007 году орбитальный космический телескоп GALEX сканировал Миру А, старую звезду — красного карлика, что являлось частью предстоящего проекта по сканированию всего неба в ультрафиолетовом свете.

Астрономы были шокированы, когда обнаружили что у Миры А имеется длинный хвост, тянущийся за ней, как за кометой, который имеет протяженность около 13 световых лет. Эта звезда двигается по Вселенной с необычайно большой скоростью, примерно 470 тысяч километров в час.

До этого считалось, что у звезд не бывает хвостов.

4) Вода на Луне

9 октября 2009 года Космический аппарат для наблюдения и зондирования лунных кратеров НАСА LCROSS обнаружил воду в холодном и постоянно находящимся в тени кратере на южном полюсе Луны.

LCROSS является зондом НАСА, который был создан для столкновения с лунной поверхностью, а маленький спутник, следующий за ним, должен был измерить химический состав материала, который поднялся вверх при столкновении.

После целого года анализа данных НАСА сообщило о том, что на нашем спутнике имеется вода в виде льда, которая находится на дне этого вечно темного кратера. Позже другие данные показали, что тонкий слой воды покрывает лунный грунт, по крайней мере, в некоторых областях Луны.

5) Карликовая планета Эрида

В январе 2005 года была открыта новая планета Солнечной системы Эрида, которая вызвала в астрономическом мире массу споров о том, что следует считать планетой вообще.

Эриду первоначально посчитали 10-й планетой Солнечной системы, но затем все объекты пояса Койпера и пояса астероидов приравняли к новому классу – карликовые планеты. Эрида находится за орбитой Плутона и имеет примерно такой же размер, хотя первоначально считалось, что она больше Плутона.

Известно, что у Эриды имеется один спутник, который назвали Дисномия. Пока Эрида и Дисномия считаются самыми дальними объектами Солнечной системы.

6) Следы водных потоков на Марсе

В 2011 году НАСА, предоставив фотографии Красной планеты, сделало заявление о том, что оно имеет свидетельства того, что на Марсе могла в прошлом течь вода, которая оставила следы. Действительно, на снимках видны длинные полосы, похожие на те, что оставляют в породах текущие потоки.

Ученые полагают, что эти потоки — соленая вода, которая разогревается во время летних месяцев и начинает стекать по поверхности. Признаки того, что на Марсе когда-то была жидкая вода, были обнаружены и раньше, однако впервые ученые заметили, что эти следы меняются в течение короткого периода времени.

7) Спутник Сатурна Энцелад и его гейзеры

В июле 2004 года космический аппарат «Кассини» вышел на орбиту вокруг Сатурна. После того, как миссии «Войяжер» приблизились к этому спутнику, исследователи решили запустить в данный район другой аппарат для более подробного исследования Энцелада.

После того как «Кассини» несколько раз пролетел мимо спутника в 2005 году, ученым удалось сделать ряд открытий, в частности, что в атмосфере Энцелада имеется водяной пар и сложные углеводородные соединения, которые выделяются из геологически активного района Южного Полюса.

В мае 2011 года ученые НАСА на конференции, посвященной этому спутнику, заявили, что Энцелад можно считать самым первым претендентом на обнаружение жизни.

8) Тёмный поток

Темный поток, обнаруженный в 2008 году, предоставил ученым больше вопросов, чем ответов. Скопления материи во Вселенной, как оказалось, двигаются на очень большой скорости в одном и том же направлении, что невозможно объяснить с помощью любой известной гравитационной силы в пределах обозримой части Вселенной. Этот феномен был назван «Темный поток».

Наблюдая за большими скоплениями галактик, ученые обнаружили около 700 галактических скоплений, двигающихся с определенной скоростью по направлению к отдаленной части Вселенной. Некоторые ученые даже осмелились предположить, что Темный поток двигается из-за давления, вызванного другой Вселенной. Однако некоторые астрономы вообще оспаривают существование темного потока.

9) Экзопланеты

Первые экзопланеты, то есть планеты, существующие за пределами Солнечной системы, были открыты в 1992 году. Астрономы открыли несколько мелких планет, вращающихся вокруг звезды Пульсар.

Первая гигантская планета была замечена в 1995 году возле близкой от нас звезды 51 Пегас, которая делала полный оборот вокруг этой звезды за 4 дня. К маю 2012 года в энциклопедии экзопланет было зарегистрировано уже 770 экзопланет. 614 из них являются частью планетарных систем и 104 – множественных планетарных систем.

К февралю 2012 года миссия НАСА «Кеплер» выявила 2321 неподтвержденных кандидата на звание экзопланет, которые связаны с 1790 звездами.

10) Первая планета в обитаемой зоне

В декабре 2011 года НАСА подтвердила сообщения об открытии первой планеты, которая расположена в обитаемой зоне, вращаясь вокруг своей родной звезды, похожей на Солнце. Планета получила название Kepler-22b. Ее радиус в 2,5 раза больше радиуса Земли, и она обращается вокруг своей звезды в пригодной для появления жизни зоне. Ученые пока не уверены относительно состава этой планеты, однако это открытие явилось серьезным шагом на пути к обнаружению похожих на Землю миров.

Источник: https://www.infoniac.ru/news/10-samyh-poslednih-kosmicheskih-otkrytii.html

10 заблуждений о космосе, в которые стыдно верить

что происходит в космосе на данный момент

Во многих фильмах можно увидеть такую картину: человек оказывается в открытом космосе без скафандра (либо с повреждённым скафандром) и быстро замерзает, превращаясь в хрупкую ледяную статую, трескающуюся от любого воздействия.

Что на самом деле. У космоса нет температуры. Он не холодный и не горячий — никакой : в вакууме нет конвекции и теплопроводности. Вообще, вакуум — хороший термоизолятор. Так что у астронавтов больше проблем с перегревом , чем с переохлаждением.

И если вы окажетесь в космосе без скафандра в тени планеты, то, скорее всего, испытаете лёгкую прохладу из‑за испарения воды с поверхности кожи. Но до твёрдого состояния точно не заморозитесь.

2. Люди могут лопнуть в космосе

Кадр из фильма «Вспомнить всё», 1990 год.

Бытует мнение, что в вакууме или в атмосфере с низким давлением, например на Марсе, человек может взорваться, как воздушный шарик. Глаза вылезут из орбит, сосуды полопаются, и незадачливый астронавт превратится в кровавое месиво.

Что на самом деле. Давление в вакууме отсутствует, и это может привести к тому, что ваши лёгкие лопнут , если вы не выдохнете, прежде чем выпрыгнуть из корабля. В крови начнут появляться газовые пузырьки (это называется эбуллизм ), на теле образуются отёки. Но кожа человека слишком упругая, и она не позволит вам взорваться.

Эксперименты на собаках показали, что в вакууме можно без последствий находиться до полутора минут, и после этого организм быстро восстановится. А вот более длительное пребывание летально из‑за гипоксии, то есть нехватки кислорода.

3. У Луны есть тёмная сторона

Тёмная сторона луны не такая уж тёмная. Снимок с зонда Lunar Reconnaissance Orbiter NASA, moon.nasa.gov

Когда люди говорят «тёмная сторона Луны», то представляют себе мрачное место, куда никогда не падает солнечный свет. Наверное, именно поэтому там строят свои базы нацисты и десептиконы.

Что на самом деле. Все стороны Луны освещаются Солнцем, и на ней есть день и ночь — правда, длятся они по две недели. Тем не менее у спутника Земли есть обратная сторона. Но из‑за того, что период вращения вокруг нашей планеты и вокруг собственной оси у Луны схожи, с Земли видно только одно её полушарие. А первые снимки другого были сделаны советской АМС «Луна‑3» ещё в 1959 году. И ничего особо таинственного там нет.

4. Чёрные дыры выглядят как воронки

Чёрная дыра в представлении художника, news.sky.com

Из‑за фильмов и картинок в интернете многие люди полагают, что чёрные дыры выглядят как вихрь, засасывающий всё вокруг себя. Или как воронка в раковине, куда стекает вода.

Что на самом деле. Впервые чёрную дыру показали реалистично в фильме «Интерстеллар», основываясь на теоретических моделях физика Кипа Торна. Уже позже NASA сделало первый её снимок с помощью системы из восьми радиотелескопов Event Horizon Telescope. В реальности чёрная дыра выглядит не как воронка, а как тёмная сфера, окружённая аккреционным диском из падающего на неё газа.

5. Солнце жёлтое

Снимок Солнца, сделанный астронавтом NASA Терри Вёртсом с борта МКС в 2015 году, space.com

Если вы попросите кого‑нибудь нарисовать наше светило, то начинающий художник непременно возьмёт жёлтый карандаш. Взгляните на Солнце, и убедитесь, что оно имеет такой оттенок.

Что на самом деле. Желтоватым Солнце делает наша атмосфера. И если взглянуть на снимки из космоса, становится понятно, что его цвет — белый . Но мы так привыкли считать Солнце жёлтым, что даже учёные классифицируют похожие на него звёзды как «жёлтые карлики» просто для удобства.

6. Первой в космос полетела собака Лайка

Героическая дворняга‑космонавт, infuture.ru

Кто первым полетел в космос? Конечно, Юрий Гагарин. А из братьев наших меньших? Собака по имени Лайка, это всем известно. Она была обычной дворнягой из приюта, отправившейся первой покорять космос.

Что на самом деле. Лайка действительно первой оказалась на орбите Земли. Но в космосе бывали живые существа и до неё. В феврале 1947 года американцы с помощью трофейной немецкой ракеты «Фау‑2» отправили в суборбитальный полёт несколько плодовых мушек (дрозофил), чтобы изучить на них воздействие космической радиации. Они долетели до высоты в 109 км, а границей космоса считается отметка в 80 км. Так что первыми его увидели мухи.

7. NASA потратило миллиарды на пишущую в космосе ручку

Та самая чудо‑ручка, spencerdub.me

Простыми ручками в космосе пользоваться нельзя, потому что чернила в стержне там не могут стекать вниз. И, согласно одной городской легенде , чтобы астронавты всё-таки смогли вести записи, NASA потратило 12 миллиардов долларов на изобретение специальной ручки. Она способна писать вверх ногами на любой поверхности при температуре от 0 до 300 °С. Советские же космонавты просто пользовались карандашами. Вот она, русская смекалка.

Что на самом деле. Поначалу и американцы, и русские пользовались в космосе карандашами, но это приводило к ряду проблем: частицы графита отслаивались и попадали в воздушные фильтры космических кораблей. А специальную ручку изобрёл Пол Фишер из Fisher Pen Company, и сделал он это независимо от NASA. Мужчина продал ведомству 400 штук по 2,95 доллара за каждую.

Наши космонавты тоже пользовались такими ручками. В своё время их закупали для работы на станции «Мир». Кстати, если хотите, можете тоже приобрести себе космическую ручку.

8. Через пояс астероидов трудно пролететь

Пояс астероидов в представлении художника, universetoday.com

Помните, как в «Звёздных войнах» Хан Соло мастерски пилотировал свой «Тысячелетний сокол», чтобы пробраться через пояс астероидов? Он умудрился обогнуть множество этих космических тел, да ещё и от погони имперских истребителей оторвался, хотя ежесекундно рисковал врезаться в парящие повсюду каменные глыбы.

Что на самом деле. В нашей Солнечной системе тоже есть свой пояс астероидов между орбитами Марса и Юпитера. Астрономы не уверены, сколько там каменных глыб, и называют приблизительное число в 10 миллионов. Но вы, даже не будучи крутым пилотом вроде Соло, легко пролетите сквозь них. Потому что среднее расстояние между астероидами в поясе — полтора миллиона километров. Это примерно в четыре раза больше, чем расстояние между Землёй и Луной.

Поэтому, чтобы в реальности врезаться в астероид, понадобится немалое старание и тщательные орбитальные манёвры. Вероятность не то что столкновения, но и просто незапланированного сближения космического корабля с каменной глыбой составляет менее чем один к миллиарду.

9. Космические корабли летают по прямой

Кадр из фильма «Прометей», 2012 год

В фильмах космические аппараты легко перемещаются из одного места в другое, просто развернувшись прямо к цели и включив двигатели. Точно так же, как автомобили или корабли на Земле. А если космолёту надо сесть на планету, он просто устремляется в её атмосферу на полной скорости.

Что на самом деле. В реальности космические аппараты двигаются от одной орбиты к другой по дугообразной гомановской траектории. И у них при этом отключены двигатели. Они включаются два раза, для разгона в начале и для торможения в конце, остальной путь корабль проделывает по инерции.

Если хотите самостоятельно поуправлять шаттлом и вживую увидеть движение по гомановской траектории, попробуйте поиграть в космический симулятор Kerbal Space Program. Он даёт наглядное представление об основах орбитальной механики.

Да, и ещё: корабли, собирающиеся приземлиться, сходят с орбиты, развернувшись двигателями по ходу движения, чтобы затормозить. В голливудских блокбастерах вроде «Прометея» такого не покажут, чтобы у зрителя не возникло вопроса, почему челноки летают задом наперёд.

10. Летом тепло, потому что Земля ближе к Солнцу

Солнце и Земля, sunearthday.nasa.gov

Смена времён года вызвана меняющимся расстоянием от Земли до Солнца. Логично, правда? К сожалению, иногда так думают не только маленькие дети, но и вполне взрослые люди.

Что на самом деле. Орбита Земли не совсем круглая — она эллиптическая. Наша планета достигает перигелия (точки на орбите, ближайшей к Солнцу) в январе и афелия (самой дальней точки от Солнца) примерно через шесть месяцев. Если бы от этого зависела погода, у нас было бы лето в январе и зима в июле.

Сезоны меняются из‑за наклона оси вращения Земли относительно её орбитальной плоскости (эклиптики). Движение по орбите действительно вызывает температурные колебания в пределах 5 °С, но этого недостаточно, чтобы устроить смену времён года.

Источник: https://Lifehacker.ru/zabluzhdeniya-o-kosmose/

Какие космонавты находятся в космосе в 2020 году?

что происходит в космосе на данный момент

Какие российские космонавты находятся в космосе в 2020 годуи какую работу они выполняют на орбите? Кто полетит следующим экипажем,расписание долговременных космических экспедиций на МКС.

Работа по освоению космоса – одна из важнейших в России,большая часть научной деятельности и экспериментов, связанных с ней, являютсясильнейшим катализатором для остальных сфер развития.

 

Несмотря на определенные сложности с финансированием и даже авариями в последнее время, работа продолжается, и российские астронавты продолжают летать на орбиту, поддерживая мировое признание России, и внося свою лепту в мировое развитие.

Кто сейчас в космосе? 

25 сентября космический корабль «Союз-15» привез на МКС трех новых космонавтов — россиянина Олега Скрипочку, американку Джессику Меир и гражданина ОАЭ Хаззаа Аль-Мансури. 

Их радостно (но втайне с долей уныния в душе) встретили шестеро членов предыдущей экспедиции — Алексей Овчинин, Ник Хейг, Кристина Кук, Александр Скворцов (Россия), Лука Парминтано (Италия) и Эндрю Морган (США). Тогда на маленькой станции оставались целых 9 человек.

3 октября корабль МС-12 увез трех членов экипажа на Землю. МКС покинули Александр Овчинин, араб Хазаа аль-Мансури и американец Ник Хейг.МКС в последнее время используется по максимуму, поэтому проживание в тесных модулях большого количества людей является одним из экзаменов на выдержку. Неслучайно кто-то в предыдущие полеты намеренно сверлил отверстия в обшивке станции.Пять месяцев в тесноте пролетели быстро.

6 февраля МКС покинули Александр Скворцов, Кристина Кук и Лука Пармитано.  

Таким образом, сейчас на МКС осталось 3 человека:

Интересно, что из неопытных космонавтов в этот раз отправлен только американец Эндрю Морган — он в космос полетел первый раз. Россия уже предпочитает отправлять мужчин, которые имеют за плечами богатый космический опыт, новичков отправляют реже.

Итак, список экспедиции МКС-61 (3 человека):  

Командир:

  • Олег Скрипочка (25/26/47/48/60/61/62);

Бортинженеры:

  • Джессика Мейер (61/61/62);
  • Эндрю Морган (60/61/62).

Кто скоро прилетит на МКС: пока программа следующих полетов утверждается. 9 апреля к нынешним членам экипажа возможно присоединятся Кристофер Кэссиди, Андрей Бабкин, Николай Тихонов.

Фото и биографии россиян, которые побывали в космосе в последнее время

В настоящее время стать космонавтом проще, чем раньше, носчастливчиков все же очень мало. За год на орбите бывает не более 10-15 человек,из России – 5-6 человек. Однако, примечательно, что берут в настоящее времякосмос не только бывших летчиков, но и людей других специальностей. Итак, в последние годы в космосе следующие российские космонавты выполняли свою работу:

Олег Скрипочка — родился в 1969 году. Закончил МГТУ имени Баумана. Работал в НПО «Энергия» слесарем, в 1997 года зачислен в отряд космонавтов-испытателей. В космосе третий раз. 

Алексей Овчинин — весьма опытный космонавт, 1971 года рождения. Уже летал к МКС в 2016 году. Закончил Борисоглебское училище летчиков, Ейское высшее училище, дополнительное образование получил в Академии народного хозяйства. Занимался подготовкой пилотов на самолетах Як-52 и Л-39. 

Александр Скворцов — российский летчик, космонавт уже неоднократно бывавший в космосе. Герой РФ. Служил в истребительном полку ПВО, летчик 1 класса. Окончил Ставропольское училище летчиков и военную академию ПВО имени Жукова. 

Олег Кононенко — профессиональный космонавт, 1964 года рождения. Это уже его четвертый полет. Закончил Харьковский авиационный институт, является специалистом по двигателям. С 1996 года приступил к космической подготовке. 

 Сергей Прокопьев — 1975 года рождения. Выпускник Тамбовского и Оренбургского военных авиационных училищ, имеет также диплом бухгалтера Мичуринского аграрного университета. Бывший командир бомбардировщиков Ту-22 и Ту-160. В космосе первый раз.   

Олег Артемьев – опытный специалист, командир, 1970 года рождения, второй раз на орбите. Родился в Риге, сын военного инженера. С детства увлекался авиацией, занимался спортом и борьбой. Закончил университет им. Баумана, академию госслужбы. С 1998 года работал в РКК «Энергия», занимался подготовкой экипажей к полетам, а в 2003 году сам стал космонавтом. 

Антон Шкаплеров – участник трех космических экспедиций, 1972 года рождения. В 1994 году окончил Высшее Авиационное училище в Качинске, в 1998 – Военную академию им. Жуковского, в 2018 году – академию госслужбы. Работал летчиком-инструктором группы пилотажа «Воздушные гусары», с начала 2000-х переведен в космическое подразделение.

Что интересно – оба последних пилота заканчивали академиюГосударственной службы при президенте РФ по гуманитарной специальности вкачестве дополнительного образования. Это может быть, как негласным требованиемиметь третью нетехническую специальность, либо при данной академии онипроходили какую-то специальную подготовку, например, при участии спецслужб.  

Какую работу выполняют космонавты на орбите?  

В составе последней экспедиции 61/62 основной задачей перед космонавтами стоит инсталляция оборудования, поступившего с последней грузовой доставкой. МКС постоянно развивается и растет, поэтому в космосе в ближайшие месяцы будут производить большой «ремонт». 

Один из самых впечатляющих достижений в ходе последней экспедиции — печать на 3Д-принтере внутренних органов мыши.  

Российские и американские космонавты на Международнойстанции выполняют работы по стыковке новых модулей, берут пробы с внешнихпанелей корабля, проводят биологические и физические опыты. Программы каждогополета составляются задолго до существования старта, перед с космонавтамиставятся задачи по увеличению безопасности, также на высоте идёт проверка новыхтехнологий.  

В ходе экспедиции 60/61 в 2019-2020 году предусмотренследующий список экспериментов и научных направлений:

Наименование Количество процедур
Физические и химические взаимодействия, тестирование материалов и сред в условиях космоса. 6
Исследование планеты Земля и Галактики. 6
Работа в открытом космосе. 13
Биоинженерия, биотехнологии, растениеводство. 11
Освоение космоса и наблюдение. 17
Образовательная и исследовательская работа. 7

Всего предусмотрено более 300 опытов и исследований. Обычно сегменты деятельности по странам на МКС имеют своиакценты. Например, американцы и европейцы сосредоточены на биологических имедицинских опытах, российские занимаются энергетикой, японцы — робототехникой.Однако, россияне тоже занимаются изучением биологических и химических областей.

Также за последние годы был внесен немалый вклад в мировую науку поисследованию Солнечной системы, проведены опыты по биологической коррозии,особенностям последствий малых инерционных сил в условиях невесомости.

Американские астронавты, конечно, нередко добиваются больших результатов в видуувеличенных экипажей и большего бюджета. Однако, россияне выполняют сложнейшие работы в открытом космосе.  

Так что, на вопрос какие космонавты находятся в космосе в2020 году сейчас, можно ответить однозначно, что сейчас в космосе только 1 человек из россиян — это Олег Скрипочка, остальные — иностранцы.

Источник: https://novosti-online.info/2761-kakie-kosmonavty-nahodyatsya-v-kosmose.html

10 последних открытий в космосе

(согласно списку Терезы Корнелиус)

Чем сильнее развиваются современные технологии, тем больше открывается возможностей для того, чтобы больше узнать о нашей Вселенной. В последнее время стало возможным подтвердить такие факты о Вселенной, о которых раньше мы могли только догадываться. Вот список некоторых из недавних открытий в космосе. Наслаждайтесь!

10. Открыт новый спутник Плутона (P4)

 Теперь нам известно, что вокруг Плутона вращается четыре спутника.

Харон был открыт в 1978 году и является крупнейшим из спутников Плутона. Его диаметр, по современным оценкам, составляет 1205 км – чуть больше половины диаметра Плутона, а соотношение масс составляет 1:8. Для сравнения, соотношение масс Луны и Земли равняется 1:81.

Из-за такого малого соотношения масс Харон и Плутон часто рассматриваются в качестве двойной карликовой планеты. В 2005 году с помощью космического телескопа Хаббл обнаружили еще 2 спутника Плутона – Никту и Гидру. Предположительно диаметр Никты – 46 км, а Гидры – 61 км.

Открытие спутника Плутона произошло в 2011 году, когда Хаббл сфотографировал небесное тело, которое временно называется P4. Его размеры составляют от 13 до 34 км. Как удивительно, что Хаббл сфотографировал такое крошечное тело, находящееся на расстоянии более 3 миллиардов километров от нас!

 9. Гигантские космические магнитные пузыри

НАСА запустило в космос два зонда Voyager для изучения пограничной области гелиосферы, находящейся на расстоянии примерно 9 миллиардов километров от Земли.

Вопреки сформировавшимся за пятьдесят лет гипотезам, наблюдатели столкнулись на границе Солнечной системы не с линейным и постепенно убывающим магнитным полем, а с кипящей пеной из локально намагниченных областей протяженностью сотни миллионов километров каждый – подвижной ячеистой структурой, внутри которой линии магнитного поля постоянно разрываются, рекомбинируются и образуют новые области – магнитные «пузыри».

8. Не только у кометы есть хвост

Специалисты NASA, работающие с научным спутником GALEX, в 2007 году сообщили об удивительном открытии. Звезда, носящая имя «Удивительная» – Мира, полностью оправдала свое название.

Сделанные GALEX в ультрафиолетовом диапазоне снимки позволили установить, что звезда, находящаяся в созвездии Кита, не только летит сквозь пространство с огромной скоростью, но еще и оставляет за собой хвост, как у кометы, длиной 13 световых лет.

 До этого открытия считалось, что звезды не могут иметь хвосты.

7. На Луне найдена вода

9 октября 2009 LCROSS – космический аппарат НАСА для наблюдения и зондирования лунных кратеров, часть его упала в районе кратера Кабеус, который находится на темной стороне Луны, на южном ее полюсе. В результате падения выброшено облако из газа и пыли.

LCROSS пролетел сквозь выброшенное облако, анализируя вещество, поднятое со дна кратера. Оказалось, облако частиц содержало не меньше 100 килограммов воды. Особенно неожиданным для учёных стало наличие на Луне большого количества ртути и серебра.

 Позже данные с трех космических аппаратов показали, что тонкая пленка воды  в некоторых областях покрывает поверхность почвы Луны.

 6. Эрис

В январе 2005 года на самом краю Солнечной системы была обнаружена маленькая планета Эрис, что вызвало дискуссии среди ученых о том, каково же на самом деле определение планеты. Названа открытая планета Эрис – в честь богини раздора в греческой мифологии.

 Эрис изначально считалась 10-й планетой Солнечной системы, но позднее она и другие объекты, расположенные в поясе Койпера, объединили в новый класс: карликовые планеты.

 Эрис находится за пределами орбиты Плутона и примерно такого же размера (диаметр планеты 2 326 километров) как Плутон.

Поверхность Эрис имеет необычайную яркость, ученые считат, что она покрыта  ледовой поверхностью. Поверхностный слой льда должен постоянно обновляться. Если бы этого не происходило, то под воздействием солнечных лучей и ударов метеоритов, она бы давно потеряла свою яркость. По предположениям, Эрис имеет атмосферу, в которой повышенное содержание метана.

Именно он периодически замерзая и оттаивая производит обновление поверхностного слоя льда. Эрис имеет один известный спутник, названный Дисномия (в греческой мифологии Дисномия – дочь богини Эрис). Период обращения планеты вокруг Солнца составляет 560 лет. Температура на поверхности около минус 250 градусов.

 Эрис и Дисномия наиболее удаленные из известных природных объектов в Солнечной системе.

 5. Вода на Марсе

В 2011 году НАСА сделало заявление, приложив к нему фотографии, что на Марсе может быть «текущая вода». Была сделана покадровая съемка, чтобы показать, как жидкость бежала по склонам гор, расположенных в средних широтах южного полушария Красной планеты. Темные полосы увеличиваются в размерах в период весны и лета и вновь пропадают к зиме.

Наиболее обоснованно предположение ученых, что это потоки соленой воды, которая достаточно сильно нагревается, когда на планете летние месяцы. Льды расплавляются и заливают поверхность. Предполагаемые ручьи шириной от полуметра до пяти метров достигают в длину нескольких сотен метров.

 Признаки того, что на Марсе когда-то была проточная вода, были обнаружены и раньше, но это первый случай, когда такое событие наблюдалось в течение короткого периода времени.

 4. Энцелад и его вулканы

Энцелад – шестой по размерам спутник Сатурна. Был открыт в 1789 году. Благодаря наблюдениям с «Вояджеров» было установлено, что диаметр Энцелада составляет примерно 500 км и что поверхность Энцелада отражает почти весь падающий на неё солнечный свет.

В 2005 году межпланетный зонд «Кассини» несколько раз прошёл вблизи Энцелада. Удалось рассмотреть своеобразный богатый водой шлейф, испаряющийся с южного полюса.

Также оказалось, что Энцелад – один из трёх небесных тел во внешней Солнечной системе (наряду со спутником Юпитера Иои спутником Нептуна Тритоном), на котором наблюдались активные извержения.

В 2011 году учёные NASA на «Enceladus Focus Group Conference» заявили, что Энцелад «наиболее жилое место в Солнечной системе за пределами Земли за все время её существования»

 3. Темный поток

Темный поток открыт в 2008 году и таит в себе больше вопросов, чем ответов. Этот поток представляет собой скопление галактик, которые под воздействием неизвестной силы на огромной скорости, около 1 тыс. км в час, мчатся к границе видимой Вселенной. Эти скопления – часть потока, который растянулся приблизительно на 3 млрд. световых лет.

Движение темного потока не может быть объяснено ни одной из известных гравитационных сил в наблюдаемой Вселенной. Одно из возможных объяснений открытого явления предполагает, что причина потока – притяжение огромного скопления материи. Но Лаура Мерсини-Хоутон из Университета штата Северная Каролина (США) выдвигает еще более сенсационное объяснение.

 С ее точки зрения, «темный поток» – признак присутствия другой вселенной, соседствующей с нашей.

Пока эти объяснения и даже само существование «темного потока» единогласного признания не получили, и вокруг них идут горячие научные дискуссии.

 2. Планеты вне солнечной системы – экзопланеты

Первые экзопланеты, были обнаружены в 1992 году.  Это планеты, обращающиеся вокруг звезды за пределами Солнечнойсистемы. Экзопланеты чрезвычайно малы и тусклы по сравнению со звёздами. Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой. Сейчас такие планеты стали открывать благодаря усовершенствованным научным методам.

К 17 мая 2012 года подтверждено существование 770 экзопланет в 613 планетных системах. По проекту «Кеплер»на 21 декабря 2011 года числится ещё 2326 экзопланет. Общее количество экзопланет в галактике Млечный Путь по новым данным от 100 миллиардов, из которых приблизительно от 5 до 20 миллиардов возможно являются «землеподобными». Большинство известных экзопланет – газовые гиганты и более походят на Юпитер, чем на Землю.

1. Первая планета в обитаемой зоне

В декабре 2011 года, НАСА подтвердили обнаружение первой планеты, которая находятся в зоне жизни звезды почти идентичной Солнцу. Ученые назвали планету Кеплер-22b. Она расположена в «зоне Златовласки», в 600 световых лет от нас.

Планета имеет радиус примерно в 2,5 раза больше радиуса Земли, и вращается в комфортной обитаемой зоне.

Ученые не уверены в составе планеты: преобладают ли на ней скальные породы, жидкость или газ, но открытие оказалось огромным шагом в поиске «близнеца Земли».

Источник: https://evivid.ru/10_poslednih_otkrytiy_v_kosmose.html

— Что случилось в космосе в этом году? События на Земле и в космическом пространстве

Я как-то с детства привык отслеживать интересные события, которые происходят в космической отрасли, включая разного рода запуски космических аппаратов, находки астрономов и прочее.

Надо сказать, за последние несколько лет космос стал гораздо ближе к человеку, если так можно выразиться. Люди снова заинтересовались Вселенной, и тем, что там происходит. В общем, в этом небольшом обзоре предлагаю ознакомиться с самыми интересными «космическими» событиями года.

Ее основатель, голландец Бас Лансдорп собирает средства на отправку команды людей к Марсу. При этом у программы есть интересный нюанс: обратного билета просто нет, люди отправляются на Красную планету в один конец.

Требуются добровольцы, и, что интересно, они находятся в большом количестве. Тысячи человек подают заявки на участие в этом проекте. В начале года было отобрано более тысячи кандидатов, котоыре, если и полетят, то только через несколько лет.

Вот модель того, что может ожидать добровольцев на Марсе:

Заселение Марса будет проходить в несколько этапов: создание посадочного модуля, создание и транспортировка модулей для жизни колонистов, транспортировка колонистов, освоение Марса.

Самая большая цифрова камера запущена в космос

Знаковым событием является запуск космического телескопа GAIA. Цель этого телескопа, вернее, его команды — составление наиболее точной карты нашей галактики изнутри. Другими словами, телескоп будет составлять детальнейший снимок Млечного пути.

Пройдет еще 2 с половиной месяца, и телескоп войдет в полностью рабочий режим, о чем, я надеюсь, смогу здесь написать :)

В соседней галактике найдена сверхновая

Сверхновая звезда — это звезда, которая собирается взорваться, причем за короткое время такое светило увеличивает светимость до светимости небольшой галактики. Появление таких звезд — редкость, очень большая редкость. И необычайной удачей можно назвать то, что земные астрономы смогли найти сверхновую в соседней галактике.

Эта звезда находится на расстоянии 12 миллионов световых лет (соответственно, взорвалась она как раз 12 миллионов лет назад, а сейчас мы наблюдаем эту картину благодаря свету, дошедшему до нас).

Звезда эта за короткое время увеличила светимость в несколько порядков, со светимости 16 до светимости 6 (то есть, рассмотреть ее можно в обычный бинокль).

Opportunity на Марсе проработал 10 лет

Представьте себе, марсоход, срок службы которого был рассчитан на 3 месяца, проработал на Марсе уже более 10 лет. При этом он остается полностью функциональным, оборудование этого марсохода из строя не выходило.

Вполне может быть, что марсоход сможет проработать на Красной Планете еще несколько лет, прежде, чем что-то таки случится (хотелось бы надеяться, что ничего такого не произойдет, но все же марсоход — очень сложный механизм, что-то когда-то да сломается).Этот трудолюбивый аппарат сделал для науки уже столько, чего ни один аппарат, устройство, до настоящего момента не делал.

 За 10 лет марсоход проехал 38,7 километров, смог «увидеть» 3556 марсианских рассвета, сделать много тысяч фотографий, переданных на Землю, а также получил доказательства существования воды на поверхности Марса. В прошлом году, в начале лета, как раз и были получены доказательства существования на Марсе (в прошлом) пресной воды.

Шестигранный шторм на Сатурне

Большой вихрь на Юпитере — буря, равной которой нет на Земле. Это атмосферное явление существует уже несколько сотен лет, и астрономы наблюдают за его развитием. Но вот Сатурн до настоящего момента считался спокойной планетой, газовым гигантом.

А ведь именно там был обнаружен шестигранный шторм, размер которого составляет 30 тысяч километров в поперечнике. Атмосферные массы вращаются там со скоростью в 320 километров в час. Это — пока что максимум для Солнечной системы.

Шестигранный шторм даже получил собственное название — планетарный гексагон.

Rosetta — высадка на комету

Такое событие, как посещение космическим аппаратом какой-либо планеты/космического тела, является уникальным. И именно такое событие должно будет произойти в ноябре этого года.

Несколько лет назад в космос был выпущен космический аппарат «Розетта» — это межпланетная космическая станция с модулем высадки на борту.

В начале этого года «Розетта», так называется станция, «проснулась» спустя два года, и теперь она, и ее посадочный модуль готовы к работе. Правда, работать устройствам придется не сейчас, а ближе к осени, когда планируется высадка на комету Чурюмова-Герасименко.

Если высадка пройдет хорошо, гладко, ученые получат огромное количество данных о строении и происхождении комет.

Кстати, посмотреть на то, что собой представляет миссия «Розетта» можно вот по этой ссылке (это 3D модель всей миссии, причем модель интерактивная, все можно покликать, подвигать).

Составлена точная панорама Млечного Пути

Благодаря современному оборудованию и развитию разного рода технологий, ученые смогли составить панораму Млечного Пути, увидев даже те участки, которые скрыты за космической пылью.

Из-за большого количества космической пыли, обычно увидеть, что за этой пылью, невозможно, а благодаря инфракрасному телескопу это стало возможным. Оказалось, что наша Галактика «пронизана с пузырьками» – полостями излучающими радиацию и ветер.

Данные позволяют ученым построить более глобальную модель звезд и образование звезд в галактике, которое называют «импульсом» Млечного Пути.

Обнаружена крупнейшая звездаКрупнейшая из всех, найденных астрономами до сих пор. Эта звезда расположена в 16 тысячах световых лет от нас. Ее размер — в полторы тысячи раз (!) больше Солнца. Это красный сверхгигант, который, в конечном итоге, должен превратиться в сверхновую.

Кроме того, эта звезда окружена водородным облаком, которое светится.

Подледный океан  на Энцеладе

Энцелад — это спутник Сатурна, причем спутник маленький. Он вроде как не представлял интереса для ученых, но сейчас оказалось, что Энцелад — интереснейший объект. Дело в том, что астрономы «засекли» на Энцеладе выбросы жидкости и пара.

Считалось, что все это может быть влиянием Сатурна, который якобы нагревает поверхность своего спутника, путем гравитационных возмущений. Оказалось же, что эти выбросы — следствие существования океана, подледного огромного океана из воды, в котором, теоретически, может существовать жизнь.

Диаметр самого Энцелада составляет 500 километров, а океан (скорее, подледное озеро), залегает  на глубине 30-40 километров.

Источник: https://xage.ru/chto-sluchilos-v-kosmose-v-etom-godu-sobytija-na-zemle-i-v-kosmicheskom-prostranstve-/

15 фактов о космосе, которые шокируют вас

Космические исследования в реальной жизни так же размыты, как и в кино. Это область, в которой не всегда можно получить точные данные. О размерах и масштабах Вселенной не знают даже лучшие ученые. Однако с каждый днем происходит все большее ее освоение.

Что все же известно исследователям о космосе, чего, возможно, еще не знаете вы?

Запись космических звуков

НАСА использует технологию, называемую ультразвуковой обработкой данных, чтобы принимать сигналы радиоволн, магнитных полей, а также плазменных волн. И преобразует эти сигналы в звуковые дорожки, чтобы «слышать», что происходит в отдаленном космосе.

Довольно жуткие звуки варьируются от мрачных всплесков до сигналов, напоминающих приближающийся космический корабль.

Синие закаты Марса

Факт о подобном явлении стал известен в 2015 году, когда удалось получить первое цветное фото этой планеты.

Ученые поясняют визуальный эффект свечением мелких частиц в атмосфере Марса, которые позволяют цветовым голубым волнам проникать в атмосферу эффективнее, чем «более длинным», таким как красный, желтый и оранжевый.

Посылка в космос безумно дорогая

Разделив стоимость запуска на вес груза, можно получить ошеломляющие цифры. Так, один лимон, отправленный в космические просторы, будет стоит 2000 долларов.

Еще не так давно каждые 450 грамм груза стоили 10 000 долларов. Теперь же цены резко возросли: до 43 180 $ для космического корабля «Лебедь» и 27 000 $ для новых носителей SpaceX. Таким образом, для полета в космос бутылки воды нужно будет заплатить в пределах от 9100 до 43 180 долларов.

Космический мусор

Космическое пространство наполнено многочисленным мусором, таким как части разрушенных ракет или неработающие спутники. Эти объекты все еще продолжают вращаться вокруг Земли со скоростью в 10 раз большей, чем скорость выстрела.

За космическим мусором наблюдают, чтобы виновные в его распространении несли за это ответственность. Однако его количество уже превысило 23 000 объектов. Лидирующими в этом списке являются США, Россия и Китай. Под ответственностью каждой из трех стран немногим меньше 4000 объектов.

Мусор этот опасен возможным столкновением, способным вызвать огромное мусорное облако из-за цепной реакции. Что и показывает нам фильм «Гравитация».

Сохранение следов на Луне

Лунные породы разрушаются настолько медленно (на 10 мм в 1 млн лет), что следы космонавтов могут сохраняться на ее поверхности в течение 10-100 млн лет.

Именно столько могут просуществовать на нашем естественном спутнике следы астронавтов, прилетевших на Луну на «Аполлоне-11» в 1969 году.

Температура космического пространства

Здесь не всегда холодно. В самых отдаленных уголках температура может опускаться до -270 °C. Но если приблизиться к Земле, где Солнце окружает все своими лучами, то можно наблюдать повышение температуры до 120 °C.

Скафандры астронавтов белого цвета, чтобы они могли отражать тепло.

Год короче дня

Венера вращается довольно медленно, в противоположном от Земли направлении. Полное ее вращение проходит за 243 наших дня, что и является ее обычным днем.

Но она расположена близко к Солнцу, потому проходит вокруг него всего за 225 дней. Таким образом, получается, что год на Венере немного короче дня.

Мкс размером с футбольное поле

Международная космическая станция является самым большим объектом, отправленным людьми в космос. Длина ее — 108 метров, а вес — почти 420 000 кг.

Во время исследований здесь побывало 230 человек из 18 разных стран.

Без скафандра

Вопреки факту, показанному в фильме «Гравитация», без скафандра в космосе вы продержались бы не больше 15 секунд.

Ровно на столько хватит всего кислорода, что есть у вас крови. После этого воздух в легких будет расширяться из-за отсутствия давления в атмосфере, что разорвет ткани. Также в незащищенном организме произойдет закипание крови и отсутствие контроля кишечника.

Космические преступники

Существуют определенные законы, согласно которым нельзя выводить на орбиту оружие массового поражения, а все исследования должны проводиться лишь в мирных целях. Любая страна несет ответственность за запускаемый в космос объект и ущерб, который он может нанести.

Поэтому ООН следит за космическим пространством и находящимися в нем объектами с людьми. Какие-либо противоправные действия могут сделать астронавта космическим преступником.

Космическое пространство

Можно подумать, что кроме планет и звезд здесь ничего нет. Несмотря на то что это недалеко от истины, космическое пространство все же не совсем представляет собой вакуум.

В нем есть небольшая плотность частиц. Это облака космической плазмы, звездной пыли и космических лучей.

Чернота пространства

Казалось бы, такое огромное количество звезд должно было заполнить пространство светом, а оно черное. В 1823 году немецкий астроном решил, что яркость статичной Вселенной, равномерно заполненной звездами, должна быть равна яркости солнечного диска. Явление назвали «парадоксом Ольсберга».

Позже оказалось, что никакой равномерной наполненности звездами нет, потому как некоторые из них существовали не так долго, чтобы их свет еще мог достигать Земли сейчас, а Вселенная имеет способность расширяться. Отсюда и чернота пространства, которое не может быть равномерно освещено.

Неоспоримый лидер

Солнце составляет 99,8 % всей массы Солнечной системы. Все остальное, включая нашу Землю, в сравнении с ним — просто пылинки.

Неудивительно, что оно миллиардами лет удерживает около себя планеты.

Черные дыры

Согласно новому исследованию, Млечный Путь содержит десятки тысяч черных дыр. Эти объекты невозможно обнаружить в спокойном состоянии.

Однако когда они взаимодействуют со звездой, ученые могут находить их с помощью рентгеновских лучей.

Септиллион звезд

Примерно такое количество звезд насчитывает Вселенная. Кстати, это число содержит 24 нуля после единицы. За девять лет наблюдений ученые выявили 10 000 галактик в самых темных глубинах Вселенной.

Только наша галактика Млечного Пути содержит около 100 млрд звезд. Умножив это число на количество галактик, получили предполагаемую цифру.

Однако это еще не окончательное количество, ведь остается много неизведанного космического пространства. По мнению ученых, эта цифра будет расти в их подсчетах, когда технологии будут более усовершенствованы для открытия новых галактик.

Нашли нарушение? Пожаловаться на содержание

Источник: https://FB.ru/post/environment/2018/5/13/26598

Что происходит с человеком в космосе?

Человечество давно мечтает покорить Марс. В октябре 2016 года НАСА заявило своей приоритетной целью отправку людей на Красную Планету к 2030-м годам.

Физиология человека и невесомость

Для того, что бы успешно спланировать осуществить миссию на Марс, ученые должны понимать, как космос влияет на физиологию человека при длительных космических полетах.

Те данные, которые известны науке в настоящий момент, позволяют сделать выводы, что нахождение в космосе однозначно сказывается на человеческом организме. Как в физическом, так и интеллектуальном плане. К тому же риски, связанные с космическими полетами, существенно различаются в разных условиях. Они будут разными на орбитальной космической станцией и космическим кораблем, направляющимся на Марс.

Физические проблемы

У космонавтов будут опухшие лица (из-за того, что жидкости тела распространяются более равномерно). Они будут страдать от уменьшения плотности костной ткани и потери минеральных веществ. Сюда можно записать недостаток сна и солнечного света. И еще увеличение уровня железа и нарушенную координацию. 

Проект НАСА по изучению зрения и внутричерепного давления космонавтов показал, что многие из них испытывают ухудшение зрения после завершения полета. Это вызвано воздействием невесомости на мозг и спинномозговую жидкость. Эти расстройства могут длиться годами.

Исследования НАСА

Космонавты, которые проводили длительные периоды времени в космосе, имеют структурные изменения глаз. Еще у них обнаружены аномально высокие уровни цереброспинальных жидкостей в головном мозге. Было продемонстрировано, что космический полеты также влияют на хрупкие окончания зрительных нервов.

Существуют свидетельства того, что воздействие галактического космического излучения увеличивает риск развития сердечно-сосудистых заболеваний. Возрастает риск рака, расстройств центральной нервной системы и острого лучевого синдрома. И эти риски могут быть даже серьезнее, чем считалось раньше.

Одно из проведенных исследований показало, что космонавты, покорившие Луну, в четыре раза чаще умирают от сердечно-сосудистых заболеваний. Если сравнивать с теми, которые не вылетали за пределы защитной магнитосферы Земли.

Кроме того, ученые все чаще исследуют психологические проблемы, связанные с космическими полетами. Космонавты, которые отправятся в дальние космические путешествия — на Луну, Марс и за его пределы, скорее всего будут изолированы во враждебной и стрессовой обстановке вместе с другими людьми, не имея возможности вернуться на Землю или быстро спастись.

Жизнь на Марсе

Так что же происходит с нашим мозгом в космосе?

Один из экспериментов NASA по нейрокогнитивной эффективности сравнивал мозг космонавтов до и после пребывания на МКС в течение шести месяцев, используя сканирование FMRI. Ученые обнаружили снижение связанности моторных и вестибулярных областей мозга. Они необходимы для координации движения у космонавтов, осуществивших длительные космические полеты.

В условиях невесомости мозг продолжает посылать такие сигналы телу, как если бы оно находилось в нормальных условиях гравитации. И тогда тело начинает думать, что оно падает или находится в перевернутом положении. Через некоторое время мозг более или менее приспосабливается к новой среде. Но при возвращении на Землю изменение рефлексов может вызвать длительные проблемы.

Серия исследовательских программ НАСА

Американское космическое агентство проводит специальные исследования. Ученые пытаются выявить, охарактеризовать и предотвратить проблемы с поведенческим здоровьем, связанные с космическими полетами. В исследовании используются ситуации, сопоставимые с земными. Такие как помещение групп людей в полной изоляции от внешнего мира на длительные периоды времени. При этом исследуются сон и усталость, проблемы сплоченности групп и возможные неблагоприятные психиатрические условия.

В 2014 году исследование Джона Хопкинса обнаружило признаки когнитивных нарушений в результате условий, которым подвергаются космонавты. Особенно сильное влияние оказывает космическое излучение, постоянно воздействующее на людей в космосе.

В октябре 2016 года UC Irvine было проведено исследование. Оно показало, что воздействие галактических космических лучей может вызвать долгосрочные когнитивные проблемы для космонавтов. Включая хроническую деменцию. В нескольких тестах, в которых были использованы грызуны, обнаружилось, что животные страдают как от воспаления головного мозга, так и от уменьшения взаимосвязи между нейронами даже через шесть месяцев после первоначального воздействия.

Животные также плохо выполняли тесты памяти. Они демонстрировали повышенную тревогу и страх, с уменьшенной способностью компенсировать стрессовые и неприятные ассоциации.

Эти выводы, по понятным причинам, вызвали опасения по поводу запланированного полета на Марс. Ведь космонавты надолго окажутся вне магнитного поля Земли, защищающего их на борту МКС. Они могут столкнуться с повышенными уровнями стресса и тревоги, наряду с нарушенными возможностями принятия решений и утратой возможности работы в режиме многозадачности. А это потенциально важные свойства психики при работе в чрезвычайных ситуациях.

Эти проблемы представляют собой головную боль для НАСА. Космические корабли обеспечивают очень ограниченную защиту от космических лучей. Их можно остановить только серьезной массивной защитой.

Установка на всем космическом корабле защитного внешнего экрана будет финансово нецелесообразной. Идея защитить изолированную часть космического корабля, в которой космонавты проводили были основную часть времени, более жизнеспособна, и вполне могла бы решить часть проблемы.

Тем не менее космонавты по-прежнему будут уязвимы к событиям солнечных бурь и вспышек. Их нелегко предсказать.

Манипуляция мозгами космонавтов

Одна из трудностей в изучении влияния космоса на интеллект космонавтов, в частности космическое излучение, заключается в том, что многие факторы, влияющие на них, обусловлены стрессовой обстановкой космического корабля. Эти факторы включают многие проблемы. Это нарушенный сон, тяжелые умственные нагрузки, высокий уровень углекислого газа и микрогравитация. В среднем, космонавты спят менее 6 часов в сутки. И должны концентрироваться и тренироваться в течение нескольких часов в день.

Типичная экспедиция на Марс будет длиться около трех лет. Это означает, что космонавты будут находиться в ограниченном пространстве с группой людей в течение очень долгого времени. Без возможности вести в режиме реального времени общение с семьей и друзьями с Земли. В настоящее время несколько компаний по заказу НАСА разрабатывают как лекарственные препараты, так и разнообразные методики для преодоления таких проблем.

В ситуации, когда космонавты учатся решать свои межличностные конфликты только с помощью компьютерной терапии и психоактивных веществ, будет трудно предсказать, что может случиться, если эти способы будут неэффективны или вызовут зависимость. Смогут ли космонавты сотрудничать и эффективно работать в течение нескольких месяцев, если они будут зависеть от таких методов лечения?

В будущем

Космические путешествия захватывали воображение человечества на протяжении веков. И перед появившимися возможности и ресурсами для отправки людей в космос будет трудно устоять.

Эти попытки будут только ускорять исследования вопросов влияния космоса на неврологию и физиологию человека. И позволят находить способы, которыми наши мозги и тела будут приспосабливаться к отдаленным и отличным от Земли средам. Тем, где происходила вся наша эволюционная история.

Они, возможно, так же приведут к рассмотрению более дорогостоящих технических решений. Таких как использование искусственной гравитации для путешествий по маршруту Земля-Марс и Марс-Земля. Или более быстрый перелет (хотя и дорогостоящий с точки зрения энергетики, но позволяющий достичь Марса меньше чем за три месяца). Или может строительство удобных больших подземных жилых объектов на Марсе.

Источник: https://alivespace.ru/chto-proishodit-s-chelovekom-v-kosmose/

Факты про освоение космоса, о которых не все знают

10 любопытнейших фактов об освоении космоса.

Секретные слова

Во время первых полетов космонавты общались с Землей с помощью секретных слов, чтобы никто не мог догадаться, как все проходит. Такими словами служили названия цветов, фруктов и деревьев.

Например, космонавт Владимир Комаров в случае повышения радиации должен был сигналить: «Банан!».Для Валентины Терешковой (первой женщины-космонавта) пароль «Дуб» означал, что тормозной двигатель работает хорошо, а «Вяз» — что двигатель не работает.

Выход в открытый космос

Следующей задачей после полета Гагарина стал выход в открытый космос. Первым это сделал Алексей Леонов во время полета на космическом корабле «Восход-2».

Тогда никто не знал, как правильно вести себя в невесомости.

Выйдя в космос, Леонов оттолкнулся от шлюза, и его сильно закрутило, но страховочный трос удержал астронавта. Его ждала еще одна проблема: скафандр неожиданно сильно раздулся, и Леонов не мог вернуться на корабль.

Он просто не помещался в люк, пока не снизил давление воздуха в скафандре.

Из-за этого выход в космос длился не 12 минут, как планировалось, а в два раза дольше.

Сила притяжения и космические скорости

Космодромы строят как можно ближе к экватору, чтобы ракета при взлете могла использовать силу вращения Земли.

Это важно, потому что улететь в космос очень сложно. Массивные космические тела, такие, как планеты, с огромной силой удерживают все окружающее.

Чтобы улететь от Земли на расстояние, с которого она не сможет притянуть вас обратно, нужно набрать вторую космическую скорость.

При первой космической скорости невозможно улететь от Земли, но можно выйти на околоземную орбиту и вращаться вокруг нашей планеты, не падая и не улетая. Именно так делают все искусственные спутники Земли, в том числе МКС.

МКС

Международную космическую станцию (МКС) начали строить в 1998 году, а первые космонавты поселились на ней 31 октября 2000 года.

МКС собирали 10 лет как огромный, сложный и очень дорогой конструктор. Ее длина — 110 метров. Одновременно на МКС живут и работают шесть человек. МКС в полном смысле этого слова — международная станция, в этом проекте принимают участие 23 страны. За сутки

МКС облетает вокруг Земли 16 раз, поэтому космонавты видят 16 восходов и закатов.

Астронавты-рекордсмены

Обеспечить существование космонавта на орбитальной станции очень сложно. На первых станциях экипажи находились не больше месяца, а на МКС живут теперь полгода.

Самый длительный в мире полет совершил Валерий Поляков — 438 суток (14 месяцев) подряд на станции «Мир».А мировой рекорд пребывания в космосе принадлежит Геннадию Падалке — за пять полетов он провел на орбите 878 суток (2 года и 5 месяцев).

Невесомость

В невесомости многое меняется. Например, увеличивается расстояние между позвонками и люди вырастают. Был случай, когда человек стал выше на 10,5 см!

А еще в невесомости очень легко передвигаться — космонавты просто летают внутри космической станции. Поэтому мышцы теряют силу, а кости становятся хрупкими. Больше всего страдают мышцы ног. Чтобы не разучиться ходить, космонавты принимают витамины и каждый день занимаются физкультурой. Они тренируются на беговой дорожке, к которой притянуты жгутами, чтобы не улететь.

Снимки из космоса

Космические аппараты летают высоко над Землей, но с них хорошо видно все, что происходит на планете, — как будто перед вами живая карта.

Множество спутников постоянно фотографируют Землю и тем самым помогают составлять карты, прогнозировать погоду, предупреждать о бурях и извержениях вулканов, наблюдать миграции животных и рыб, отслеживать загрязнения природы.

Фотографии из космоса используются также для сельскохозяйственных, экологических и многих других задач.

Приземление

Многие космонавты говорят, что спуск оставляет самые яркие впечатления от всего космического полета. Через иллюминатор они видят пламя, которое охватывает корабль во время прохождения плотных слоев атмосферы.

На Землю корабль опускается на большом парашюте, но он раскрывается не сразу, чтобы не было слишком сильного рывка.

Вначале раскрывается совсем маленький парашют, он вытягивает за собой второй — побольше, и только потом раскрывается главный большой парашют. Весь спуск на парашюте занимает 15 минут.

Восстановление

Сразу после возвращения астронавта на Землю начинается курс восстановления. На это уходит столько же времени, сколько человек провел на орбите, а иногда и больше.

Нужно заново учиться держать равновесие, тренировать мышцы и укреплять сердце.

Послание для инопланетян

В 1977 году были запущены американские космические аппараты «Вояджер I» и «Вояджер II». Тридцать лет они летели по Солнечной системе, изучая планеты, а в 2007 году покинули ее пределы и продолжают лететь дальше.

К каждому «Вояджеру» прикрепили алюминиевую коробку с посланием для инопланетян в виде позолоченного диска.

На диске записана информация о нас и нашей планете: музыка, приветствия на разных языках, фотографии с видами Земли, научные данные о человеке.

Источник: https://weekend.rambler.ru/read/42979356-fakty-pro-osvoenie-kosmosa-o-kotoryh-ne-vse-znayut/

Россия в космосе. Как действительно обстоят дела в отечественной космонавтике

Тринадцать лет подряд Россия лидировала по количеству космических запусков. Но в 2016 году нас обогнали США и — впервые — Китай. В 2017 году одна частная компания SpaceX имеет шансы обогнать Россию по количеству запусков. Наше лидерство по этому параметру было предметом гордости, и его потеря стала поводом для расстройства. Насколько оно обосновано?

Количество пусков по странам с 2004 года

Большое количество российских запусков в последние годы имеет сразу несколько причин. Во-первых, развертывались прикладные спутниковые группировки — ГЛОНАСС для навигации, «Экспресс», «Ямал» для связи, «Ресурс» для дистанционного зондирования Земли, военные спутники. Во-вторых, активно запускались иностранные космические аппараты по коммерческим контрактам.

Когда в 90-х годах российские ракеты-носители вышли на мировой рынок, они оказались дешевыми и были очень востребованы.

Специально созданная компания ILS предлагала выгодные цены на «Протоны», и с 1996 года было произведено уже 98 пусков на самую коммерчески востребованную геостационарную орбиту. В-третьих, по пилотируемой программе каждый год стартует 4 «Союза» с космонавтами и 4–5 грузовых «Прогрессов», это уже как минимум 8 пусков в год.

Сейчас ГЛОНАСС развернута и требует меньшего количества запусков для поддержания группировки. С коммерческими контрактами ситуация ухудшилась: на рынок пусковых услуг пришла частная компания SpaceX, составив конкуренцию ценам ILS.

В 2016 году авария «Протона» не привела к потере полезной нагрузки, спутник был успешно выведен на целевую орбиту, но расследование происшествия наложилось на обнаружение неправильного припоя в двигателях, и в результате «Протон» не летал почти год.

Даже в пилотируемой программе убрали один грузовой «Прогресс», из-за чего пришлось сократить российский экипаж МКС с 3 человек до 2.

Парадоксально, но сокращение пусков является следствием и одной хорошей причины. В 80-е годы СССР производил в районе сотни пусков в год, но его связные спутники «Стрела» могли работать на орбите только полгода, а разведывательные «Зениты» — всего две недели.

Когда срок активного существования спутников настолько мал, он сводит на нет эффект от большого количества запусков. Сейчас наши спутники стали работать на орбите гораздо дольше, поэтому и запускать новые на замену нужно реже.

Также параллельно идет процесс замены ракет-носителей. Старые «Космос» и «Циклон» уже не летают, конверсионные «Днепры» тоже постепенно заканчивают свою карьеру. И если новый легкий «Союз-2.1в», впервые полетевший в конце 2013 года, в июне 2017 стартовал уже в третий раз, то у «Ангары» дела идут менее успешно.

После двух испытательных пусков в 2014 году она до сих пор не начала летать с настоящими спутниками. Дело не только в устранении неизбежных замечаний после первых — пусть и успешных — пусков. Центр имени Хруничева, на котором производится «Ангара», переносит производство ракет в Омск и сокращает площади в Москве на 80 %.

На фоне этих пертурбаций задержка с серийным производством, увы, закономерна.

Аварийность

Распространено мнение, что наши ракеты постоянно падают. Но статистика это не подтверждает. Если посмотреть относительную аварийность (количество аварий, разделенное на количество ракет), то видно, что показатели российской космонавтики находятся на сравнимом с другими странами уровне.

Относительная аварийность ведущих космических держав с 2004 года, потеря полезной нагрузки 1 балл, авария без потери полезной нагрузки — 0,5 балла

Кроме Европейского космического агентства, отличающегося почти нулевой аварийностью (причем единственное происшествие в 2014 году связано с нештатной работой российского блока «Фрегат» — спутники были выведены на нерасчетную орбиту, но успешно эксплуатируются), Россия, США и Китай показывают примерно одинаковую аварийность.

Почему же миф о постоянно падающих наших ракетах так живуч?

Во-первых, работа СМИ построена так, что успешный запуск проходит с минимальным освещением, а вот авария обращает на себя гораздо больше внимания.

Во-вторых, космонавтика воспринимается как составная часть престижа страны, поэтому есть силы, которые всячески подхватывают новости об авариях, чтобы использовать их для доказательства того, что «в стране все плохо». Существует целый список мемов, который регулярно достается по любому поводу и лично у меня уже в зубах навяз.

В-третьих, сама психология человека тяготеет к черно-белому мышлению, а для рационального анализа требуются интеллектуальные усилия. Ну и в-четвертых, несмотря на действительно хорошие усилия Роскосмоса по пиару, многое можно было бы сделать лучше.

Пиар

Можно услышать мнение, что дела у Роскосмоса идут хорошо, но он не умеет пиариться. Это не совсем верно — пиар-активность Роскосмоса довольно заметна. У агентства есть активно ведущиеся страницы в социальных сетях. Космонавты участвуют в эфирах, ведут свои страницы, и, например, в Instagram фотографии с орбиты весьма популярны. В 2016 году большие усилия были затрачены на слоган «Подними голову!».

Много хороших слов можно сказать о ТВ Роскосмоса. Они выпускают на  две еженедельные передачи (до недавнего времени одна выходила на «России 24»), делают хорошие фильмы. Благодаря им мы можем подробно узнать о том, как тренируются космонавты.

Также они создали хорошую видеоэнциклопедию «Космонавты» и сумели выпустить очень симпатичные ролики по астрономии «а что, если бы».

В то же время возникает ощущение, что работе не хватает ресурсов и системности. Например, старт пилотируемого корабля — важное и волнующее событие. Но нет его равномерного и заметного освещения. Иногда выделяется больше ресурсов, пуск комментируют и пытаются обратить на него больше общественного внимания. Но временами, наоборот, качество работы проседает.

Когда 28 июля стартовал пилотируемый «Союз», Северо-Западная Федерация космонавтики (энтузиасты-популяризаторы, не входящие в структуру Роскосмоса) организовала показ пуска на фестивале «Старкон». Но конкретно в этот раз качество трансляции было одним из худших за несколько последних лет, и это смазало старания людей.

Увы, но за равномерно качественным освещением пуска приходится идти на NASA TV.

К сожалению, не заметно, чтобы на пиар выделялись серьезные ресурсы. Доходит до смешного — больше пятидесяти лет ракеты семейства «Р-7» летали без бортовых камер. Европейское космическое агентство в 2014 году на свои деньги купило пару комплектов камер, поставило их на приобретенные российские ракеты и получило шикарную картинку разделения боковых блоков первой ступени.

Роскосмос один раз поставил камеры на ракету, стартовавшую с космодрома «Восточный» в 2016 году, и все. И это при том, что кадры с ракеты в реальном времени показывают не только блестяще владеющая пиаром SpaceX, но даже Китайское космическое агентство.

Ну и, наконец, в чем-то с пиаром Роскосмосу банально не повезло. Самый зоркий телескоп, «Спектр-Р», который видит в тысячу раз лучше «Хаббла», работает в радиодиапазоне, и его результаты выглядят абсолютно не зрелищно при всей научной уникальности.

Изображение галактики OJ287

Хорошо и плохо

Космическая отрасль любой страны имеет свои сильные и слабые стороны — кто-то достиг многого в одном, у кого-то преимущества в другом, и у всех свои проблемы.

Сильные стороны:

  1. Российская космонавтика имеет развитую прикладную составляющую. Одна из двух глобальных навигационных систем, геостационарные и низкоорбитальные системы связи, метеорологические спутники и спутники дистанционного зондирования Земли, группировки военных спутников — все это у нас есть. По количеству работающих спутников Россия занимает третье место после США и Китая.
  2. Однозначно сильной стороной является пилотируемая космонавтика. Корабль «Союз» — надежный и эффективный, и даже после начала полетов американских пилотируемых кораблей будет неплохо смотреться на их фоне. Он может быть не особо комфортным, но без проблем проработает до появления нового корабля «Федерация». Огромное количество знаний и технологий наработано по орбитальным станциям и долговременному пребыванию человека в космосе.
  3. Сохраняется первенство в отдельных направлениях. Например, у нас лучшие кислородно-керосиновые двигатели для ракет и отличные электрореактивные (ионные, плазменные) двигатели для спутников. Ракеты-носители «Протон» и «Союз» имеют огромную наработанную статистику эксплуатации, при этом постоянно модернизируются.
  4. Разрабатываются потенциально прорывные технологии — ядерный буксир, детонационные двигатели, гиперзвуковые технологии (пока что для военного применения, в будущем могут использоваться для космоса), метановые двигатели.

Слабые стороны:

  1. Нет собственных научных аппаратов за пределами земной орбиты. Да, они не могут пока принести прямую прибыль, но это интересные научные данные и много пиара. Частично эта проблема компенсируется участием в совместных проектах, когда наши приборы стоят на аппаратах других космических агентств — детекторы нейтронов на орбитах Луны и Марса, а также на «Кьюриосити» — наши. Проект «Экзомарс» является совместным с Европейским космическим агентством.
  2. Есть провалы в некоторых технологических направлениях. Несмотря на то что мы умеем производить кислородно-водородные двигатели, они до сих пор не переходят из лабораторий на серийные ракеты. А эти двигатели очень выгодны на верхних ступенях. Есть проблемы с элементной базой для космических аппаратов.
  3. Из лидера по выгодности коммерческих запусков наша космонавтика перешла в состав соревнующихся. Сейчас разрабатывается модификация «Протона» — «Протон Средний», который должен будет повысить конкурентоспособность на рынке пусковых услуг. Теоретически экономически эффективной должна была стать «Ангара», но без регулярных пусков нельзя сказать, оправдаются ли эти расчеты.
  4. Нет четкого видения плана развития космонавтики на несколько лет вперед. Внезапные новости о том, что, например, на «Восточном» не будет пилотируемой «Ангары», а космонавтов будет возить с Байконура еще не спроектированная до конца ракета «Союз-5» (она же «Феникс»/«Сункар») заставляют ожидать новых внезапных изменений.

Космонавтика России, увы, не находится «впереди планеты всей» — есть области, где нас обгоняют. В то же время и хоронить ее категорически не верно — работа идет активно и достаточно неплохо. В ближайшие годы Россия даже при инерционном движении останется в списке ведущих космических государств (США, Россия, Китай) и агентств (Европейское космическое агентство, 22 страны).

Источник: https://knife.media/russia-in-space/

Разница во времени на Земле и в космосе

В 20 в. было доказано, почему отличается время в космосе и на Земле. Разница создается благодаря действию гравитационного поля.

До научных открытий, совершенных ученым Альбертом Эйнштейном, время считалось неизменной величиной. Люди думали, что оно всегда и везде протекает одинаково.

Все изменила Общая теория относительности — согласно данному научному труду, пространство и время связаны друг с другом, а минуты и секунды отсчитываются неодинаково для тел движущихся и находящихся в состоянии покоя.

Учёные США провели исследования изменения пространства. Эксперимент заключался в запуске спутника, который благодаря наличию специального оборудования измерял и высчитывал влияние нашей планеты на пространство, которое ее окружает. Действительно, Земля как бы деформирует пространство, находящееся рядом с ней. Credit: rutvet.ru.

Важность теории Эйнштейна

Вначале Эйнштейн назвал свою работу «К электродинамике движущихся тел». Теорией относительности она стала позже — когда научный мир, ознакомившийся с ней, сделал выводы, касающиеся «относительного» положения тел в пространстве.

Так, человек, находящийся на борту судна, к примеру на его палубе, бросающий камень по направлению к носовой части, не заметит разницы для себя, если корабль плывет или остается неподвижным. Объясняется феномен тем, что по отношению к кораблю местоположение человека всегда остается неизменным.

За десятилетний период с 1905 по 1915 год Эйнштейн разработал Общую теорию относительности, которая является одной из самых важных теорий в современной физике. Credit: shorts.ru.

Основные выводы

Существует 2 основополагающих принципа, вытекающих из Общей теории относительности:

  1. Гравитационные поля создают пространственно-временное искривление.
  2. Для каждого объекта, находящегося в движении, время идет медленнее, чем для того, который остается в покое.

Благодаря релятивистскому замедлению времени для движущихся с ненулевой скоростью объектов любые физические процессы в нем происходят не так быстро, как в статическом положении.

Одним из принципов Теории относительности является пространственно-временное искривление. На схеме видно, как Солнце и другие планеты своей массой, как бы продавливают пространство вокруг себя, изменяя его. Credit: spacetime.ws.

Практический пример

Существует доказательство того, что для человека, летящего самолетом, время течет медленнее, чем для людей, которые находятся на Земле в состоянии покоя. Но этой разницы никто не почувствует, ведь она составит не более миллиардной доли секунды.

Ситуация меняется, когда скорость движущегося объекта многократно увеличивается.

Так, ракета, летящая со скоростью света, способна за 1 год преодолеть расстояние, составляющее 100 и более лет по земным меркам. Для самого космонавта, находящегося внутри такой ракеты, минутные стрелки двигались бы так же, как и всегда, — замедление заметили бы только земляне, каким-либо образом увидевшие часы, установленные в кабине корабля.

С другой стороны, космонавт, в этот момент посмотревший из иллюминатора на Землю и увидевший на ее поверхности часы, обратил бы внимание на их замедленный ход.

Несмотря на это, в действительности замедление возникает только у космонавта. Это связано с большой скоростью летящей ракеты и тем, что точки отсчета для корабля и планеты остаются неравноправными, ведь Земля постепенно передвигается по прямой траектории, а летательный аппарат перемещается с ускорением.

Искривление пространства и времени как причина относительности

Любой физический предмет, обладающий ненулевым весом, изменяет вокруг себя пространственно-временные показатели.

Рядом с таким небольшим объектом, как яблоко, искривление минимально, а явные изменения происходят только в пространстве, окружающем массивные тела.

На фотографии — изображение одного квазара. Его свет, искривляется пространством вблизи массивной черной дыры (посередине) и доходит до нас в виде четырех отдельных пятен. Время рядом с черной дырой будет сильно замедлено. Credit: телескоп «Хаббл», NASA.

Земля своей массой создает гравитационное поле такой силы, что для объектов, находящихся на земной орбите, время проходит медленнее, чем на поверхности планеты.

Наличие временного несоответствия было выявлено при отправке сообщений со спутников на Землю.

Ощутимое пространственно-временное искривление возникает вблизи любых массивных тел — планет, звезд. Это было доказано опытным путем.

Свет квазара, расположенного неподалеку от мощной черной дыры, искривляется, время в той области также замедляется.

Это видно по тем пятнам, которые проявляются для земного наблюдателя через неравные временные периоды.

Уничтожение стереотипов

Из всего вышесказанного можно сделать вывод: время в космосе протекает по-разному.

Рядом с крупными объектами оно идет медленнее, а вдали от них, в пространстве без звезд и черных дыр, — быстрее.

Все это в корне рушит стереотип, согласно которому время представляется константой, некой постоянной величиной.

Когда скорость объекта приближается к скорости света, внутреннее время объекта, согласно расчётам, замедляется. Credit: spacetime.ws./v-kosmose.com.

Интересные факты

Согласно теории относительности, любой предмет, на который действует гравитация, падает прямолинейно и равномерно.

Мяч, по которому ударили, движется не по дугообразной, а по прямой траектории. Он летит вверх и падает обратно на Землю из-за пространственно-временного искривления, поскольку траектории подброшенного предмета и планеты в установленный момент сходятся в 1 точке.

Атомные часы на Земле и в космосе

Чтобы доказать, что время на орбите проходит медленнее, чем на земной поверхности — достаточно выдать космонавту, готовящемуся к полету в космос, атомные часы и в точности такие же оставить на Земле.

Если сверить время на часах космонавта, вернувшегося с МКС с местным временем, окажется, что они отстают. Это означает, что космическое время на станции проходило медленнее.

Для определения того, какая разница во времени в космосе и на Земле в 1967 году появились атомные часы. Они определяли время с такой точностью, что ученые смогли высчитать, что Земля вращается все медленнее (на доли секунд!). Credit: NPL/SPL/Corbis.

Источник: https://o-kosmose.ru/solnechnaya-sistema/raznitsa-vo-vremeni-na-zemle-i-v-kosmose

ЭТО ИНТЕРЕСНО:  Как пользоваться святым маслом
Понравилась статья? Поделиться с друзьями:
Православный Богослов
Что такое псалом определение

Закрыть